Symmetries: Algebra and Physics

对称性:代数和物理

基本信息

  • 批准号:
    RGPIN-2022-04708
  • 负责人:
  • 金额:
    $ 5.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Symmetries are important in Science and especially in Physics. Models that can be solved exactly form the backbone of much theoretical understanding and it is observed that the presence of symmetries is the hallmark of such systems. Symmetries are described mathematically by algebras and because of this connection, the discovery of various algebraic structures has most often led to advances in theoretical physics. My research bears on the topics of the virtuous circle composed by symmetries, algebra, representation theory, special functions and physical models. I will determine the entanglement of quantum many body systems, design models related to tasks in quantum information and develop the mathematics of symmetries with an eye to special functions. This program comprises five related parts. Here are some details. 1. Heun operators. The standard Heun operator defines the differential equation with four regular singularities; it arises in many problems such as generalized tops or Gaudin magnets. I will transcend the current picture by introducing many new operators of Heun type with the help of the tridiagonalization method. The Bethe ansatz will be used to diagonalize these operators and applications in physics will be developed. I will show that from these constructs one can obtain algebras of Sklyanin type that are central in quantum integrable models. 2. Entanglement. This is a chief feature of quantum theories which is described by entropies. I will use the analogy between the time and band limiting problem in signal processing and the characterization of the entanglement of systems of fermions (on graphs), together with the key role that Heun operators play in the former context, to make headways in the latter. In the process I will advance long-standing questions in algebraic combinatorics. 3. Fractional revival. This is the phenomenon where an excitation periodically resurges at different locations simultaneously; in the case of only one location, it is Perfect Transfer. I will use orthogonal polynomials to design analytic mass-spring chains that possess this feature exactly or approximately. This will relate to the body of work on devices performing quantum information tasks. 4. Rational functions. To each family of orthogonal polynomials of the Askey scheme there is an algebra that encodes their properties. I will extend the Askey scheme to rational functions. This will involve generalized eigenvalue problems and introducing meta-algebras encompassing the ones associated to polynomials. Applications to ASEP models will be explored. 5. Askey-Wilson algebras, topological theories. I will obtain the reflection matrices of the quantum double of the algebras of finite groups and determine their roles in the Kitaev quantum error correcting codes with boundaries. I will develop many generalizations of the algebra associated to the Askey-Wilson polynomials and find its realization in Chern-Simons field theories that embody links invariants.
对称性在科学中很重要,特别是在物理学中。可以精确求解的模型构成了许多理论理解的支柱,而且可以观察到,对称性的存在是这种系统的标志。对称是由代数在数学上描述的,由于这种联系,各种代数结构的发现经常导致理论物理的进步。我的研究涉及到由对称、代数、表示论、特殊函数和物理模型组成的良性循环的主题。我将确定量子多体系统的纠缠,设计与量子信息中的任务相关的模型,并着眼于特殊函数发展对称性的数学。该计划由五个相关部分组成。以下是一些细节。1.Heun算子。标准Heun算符定义了具有四个正则奇点的微分方程;它出现在许多问题中,如广义TOP或Gaudin磁铁。借助于三对角化方法,我将通过引入许多新的Heun型算子来超越目前的图景。Bethe ansatz将被用来对角化这些运算符,并将在物理学中开发应用。我将证明,从这些构造中,人们可以得到在量子可积模型中处于中心的Sklyanin型代数。2.纠缠。这是用熵描述的量子理论的一个主要特征。我将使用信号处理中的时间和带宽限制问题与费米子系统(在图上)纠缠的表征之间的类比,以及Heun算符在前者中所起的关键作用,以在后一种情况下取得进展。在这个过程中,我将提出代数组合学中长期存在的问题。3.部分复兴。这是一种激发周期性地同时在不同位置重新出现的现象;在只有一个位置的情况下,它是完美的转移。我将使用正交多项式来设计精确或近似具有此特征的解析质量弹簧链。这将与执行量子信息任务的设备上的工作主体有关。4.有理函数。对于Askey方案的每一族正交多项式,都有一个对它们的性质进行编码的代数。我将把Askey方案扩展到有理函数。这将涉及到广义特征值问题和引入包含与多项式相关的元代数。将探索在ASEP模型中的应用。5.Askey-Wilson代数,拓扑学理论。得到有限群的代数的量子对的反射矩阵,并确定它们在Kitaev有界量子纠错码中的作用。我将发展与Askey-Wilson多项式有关的代数的许多推广,并在体现链接不变量的Chern-Simons场论中找到它的实现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vinet, Luc其他文献

Analytic next-to-nearest-neighbor XX models with perfect state transfer and fractional revival
  • DOI:
    10.1103/physreva.96.032335
  • 发表时间:
    2017-09-25
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Christandl, Matthias;Vinet, Luc;Zhedanov, Alexei
  • 通讯作者:
    Zhedanov, Alexei
On the Discretization of the Coupled Integrable Dispersionless Equations

Vinet, Luc的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vinet, Luc', 18)}}的其他基金

Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
  • 批准号:
    RGPIN-2017-06166
  • 财政年份:
    2021
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
  • 批准号:
    RGPIN-2017-06166
  • 财政年份:
    2020
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
THE CRM: 50 years of shaping mathematical sciences in Canada
THE CRM:加拿大数学科学发展 50 年
  • 批准号:
    342065-2014
  • 财政年份:
    2020
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Thematic Resources Support in Mathematics and Statistics
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
  • 批准号:
    RGPIN-2017-06166
  • 财政年份:
    2019
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
THE CRM: 50 years of shaping mathematical sciences in Canada
THE CRM:加拿大数学科学发展 50 年
  • 批准号:
    342065-2014
  • 财政年份:
    2019
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Thematic Resources Support in Mathematics and Statistics
THE CRM: 50 years of shaping mathematical sciences in Canada
THE CRM:加拿大数学科学发展 50 年
  • 批准号:
    342065-2014
  • 财政年份:
    2018
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Thematic Resources Support in Mathematics and Statistics
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
  • 批准号:
    RGPIN-2017-06166
  • 财政年份:
    2018
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Information Transport, Algebra Representations, Orthogonal Polynomials and (Super)Integrable Models
量子信息传输、代数表示、正交多项式和(超)可积模型
  • 批准号:
    RGPIN-2017-06166
  • 财政年份:
    2017
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
THE CRM: 50 years of shaping mathematical sciences in Canada
THE CRM:加拿大数学科学发展 50 年
  • 批准号:
    342065-2014
  • 财政年份:
    2017
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Thematic Resources Support in Mathematics and Statistics
Exactly Solving Physical Systems: Methods and Applications
精确求解物理系统:方法与应用
  • 批准号:
    9428-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Conference: On the Crossroads of Algebra, Geometry, and Physics
会议:代数、几何和物理的十字路口
  • 批准号:
    2200713
  • 财政年份:
    2022
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Standard Grant
Project Empower: Collaborative Curriculum Design Tailored for Student Success and Inclusive Culture in Algebra-Based Physics
项目授权:为学生成功和代数物理包容性文化量身定制的协作课程设计
  • 批准号:
    2216167
  • 财政年份:
    2022
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Standard Grant
Elliptic representation theory: the study of symmetries across geometry, algebra and physics
椭圆表示理论:跨几何、代数和物理学的对称性研究
  • 批准号:
    DE190101222
  • 财政年份:
    2019
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Early Career Researcher Award
Applications of Homological Algebra in Algebra, Geometry, and Physics
同调代数在代数、几何和物理中的应用
  • 批准号:
    RGPIN-2017-06572
  • 财政年份:
    2018
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
Conference Proposal: Cluster Algebra and Mathematical Physics
会议提案:团簇代数和数学物理
  • 批准号:
    1802934
  • 财政年份:
    2018
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Standard Grant
Combinatorics in Algebra, Geometry, and Physics
代数、几何和物理中的组合数学
  • 批准号:
    1764370
  • 财政年份:
    2018
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Continuing Grant
Applications of Homological Algebra in Algebra, Geometry, and Physics
同调代数在代数、几何和物理中的应用
  • 批准号:
    RGPIN-2017-06572
  • 财政年份:
    2017
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
"Applications of Homological Algebra in Algebra, Geometry, and Physics"
“同调代数在代数、几何和物理中的应用”
  • 批准号:
    36739-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
Research on the Integration of Computational Modeling and Algebra-Based Physics to Improve Teaching and Learning of Computational Thinking
计算建模与代数物理相结合以改善计算思维教学的研究
  • 批准号:
    1640791
  • 财政年份:
    2016
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Standard Grant
"Applications of Homological Algebra in Algebra, Geometry, and Physics"
“同调代数在代数、几何和物理中的应用”
  • 批准号:
    36739-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 5.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了