Combinatorial Optimization for Computer Vision and Biomedical Image Analysis

计算机视觉和生物医学图像分析的组合优化

基本信息

  • 批准号:
    RGPIN-2017-04960
  • 负责人:
  • 金额:
    $ 6.18万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Automatic computer/robot vision for manufacturing, health care, security, and multi-media is a very active area of research, but real data performance is still far from perfect in quality, speed, or both. Due to explosion in availability of ever diverse digital media and computational resources, the number of potential applications grew significantly, but so did the size and complexities of the data. Despite significant progress in the last 10-15 years, the computer vision and biomedical image analysis communities are looking for new algorithms and mathematical models even for basic problems like segmentation, reconstruction, detection. Robustness, computational efficiency, and scalability of algorithms are crucial factors. Efficient optimization methods for high-order regularization constraints in the context large real data with high-dimensional features remain a challenge. ******My approach to computer vision and biomedical image analysis is largely based on discrete models and combinatorial optimization methods. My past research demonstrated many powerful combinatorial algorithms (e.g. graph cut, a-expansion, facility location, etc.) or discrete approximation methods (e.g. based on bound optimization, trust region) computing either globally optimal or provably good solutions for mathematically justified high-order graphical models in a wide range of problems in vision and biomedical imaging. These optimization methods lead to breakthrough results for difficult problems like N-D image segmentation, multi-camera stereo, texture synthesis, motion analysis, object detection/recognition, and thin-structure estimation. ******There are many reasons to continue research in discrete algorithms for regularization, which is my long term goal. Alternative continuous approaches require GPU implementations only to generate running times comparable to discrete methods. They are also not as stable or repeatable explaining lack of publicly available code - in contrast to combinatorial algorithms (with 20-30 daily downloads from my group's web site). Other alternative methodologies lack geometric justification making it impossible to integrate principled structural/topological constraints. The problems I plan to work on in the next five years are related to efficient optimization for high-order priors, structured partially-ordered labeling, curvature-based vessel extraction, regularization constraints for clustering in high-dimensional feature spaces, and integration of principled fast multi-object segmentation techniques with machine learning methodologies for object classification based on kernel SVM and neural networks.
用于制造业、医疗保健、安全和多媒体的自动计算机/机器人视觉是一个非常活跃的研究领域,但实际数据性能在质量、速度或两者兼而有之方面仍远未达到完美。由于各种数字媒体和计算资源的爆炸性增长,潜在应用程序的数量显著增加,但数据的大小和复杂性也随之增加。尽管在过去的10-15年里取得了显著的进步,但计算机视觉和生物医学图像分析领域正在寻找新的算法和数学模型,即使是对于分割、重建、检测等基本问题也是如此。算法的健壮性、计算效率和可扩展性是至关重要的因素。在具有高维特征的海量真实数据背景下,高效的高阶正则化约束优化方法仍然是一个挑战。我对计算机视觉和生物医学图像分析的方法主要是基于离散模型和组合优化方法。我过去的研究展示了许多强大的组合算法(例如图割、a-扩展、设施选址等)。或离散近似方法(例如,基于边界优化、信赖域),为视觉和生物医学成像中的广泛问题中的数学证明合理的高阶图形模型计算全局最优或可证明良好的解。这些优化方法在N-D图像分割、多摄像机立体、纹理合成、运动分析、目标检测/识别和薄结构估计等难题上取得了突破性的结果。*有很多理由继续研究正则化的离散算法,这是我的长期目标。替代的连续方法只需要GPU实现来产生与离散方法相当的运行时间。它们也不那么稳定或可重复地解释缺乏公开可用的代码-与组合算法(每天从我的团队的网站下载20-30次)形成对比。其他替代方法缺乏几何合理性,因此无法集成原则性的结构/拓扑约束。我计划在未来五年内研究的问题涉及高阶先验的有效优化、结构化偏序标记、基于曲率的血管提取、高维特征空间中聚类的正则化约束以及基于核支持向量机和神经网络的对象分类的机器学习方法与原则性快速多对象分割技术的集成。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boykov, Yuri其他文献

Interactive Segmentation with Super-Labels.
Fast Approximate Energy Minimization with Label Costs
  • DOI:
    10.1007/s11263-011-0437-z
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    19.5
  • 作者:
    Delong, Andrew;Osokin, Anton;Boykov, Yuri
  • 通讯作者:
    Boykov, Yuri
Energy-Based Geometric Multi-model Fitting
Performance of an automated segmentation algorithm for 3D MR renography
  • DOI:
    10.1002/mrm.21240
  • 发表时间:
    2007-06-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Rusinek, Henrv;Boykov, Yuri;Lee, Vivian S.
  • 通讯作者:
    Lee, Vivian S.
Graph cuts and efficient N-D image segmentation

Boykov, Yuri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boykov, Yuri', 18)}}的其他基金

Combinatorial Optimization for Computer Vision and Biomedical Image Analysis
计算机视觉和生物医学图像分析的组合优化
  • 批准号:
    RGPIN-2017-04960
  • 财政年份:
    2021
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Optimization for Computer Vision and Biomedical Image Analysis
计算机视觉和生物医学图像分析的组合优化
  • 批准号:
    RGPIN-2017-04960
  • 财政年份:
    2020
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Optimization for Computer Vision and Biomedical Image Analysis
计算机视觉和生物医学图像分析的组合优化
  • 批准号:
    RGPIN-2017-04960
  • 财政年份:
    2018
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Optimization for Computer Vision and Biomedical Image Analysis
计算机视觉和生物医学图像分析的组合优化
  • 批准号:
    RGPIN-2017-04960
  • 财政年份:
    2017
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Optimization Methods for Computer Vision and Bio-medical Image Analysis
计算机视觉和生物医学图像分析的组合优化方法
  • 批准号:
    298299-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Optimization Methods for Computer Vision and Bio-medical Image Analysis
计算机视觉和生物医学图像分析的组合优化方法
  • 批准号:
    298299-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
High-Performance Workstations for Combinatorial Approach to Multi-dimensional Big Data in Computer Vision and Bio-medical Image Analysis
用于计算机视觉和生物医学图像分析中多维大数据组合方法的高性能工作站
  • 批准号:
    473012-2015
  • 财政年份:
    2014
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
Combinatorial Optimization Methods for Computer Vision and Bio-medical Image Analysis
计算机视觉和生物医学图像分析的组合优化方法
  • 批准号:
    298299-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Optimization Methods for Computer Vision and Bio-medical Image Analysis
计算机视觉和生物医学图像分析的组合优化方法
  • 批准号:
    298299-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial algorithms for computer vision and image-based 3d modelling
用于计算机视觉和基于图像的 3D 建模的组合算法
  • 批准号:
    298299-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Combinatorial Optimization for Computer Vision and Biomedical Image Analysis
计算机视觉和生物医学图像分析的组合优化
  • 批准号:
    RGPIN-2017-04960
  • 财政年份:
    2021
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Optimization for Computer Vision and Biomedical Image Analysis
计算机视觉和生物医学图像分析的组合优化
  • 批准号:
    RGPIN-2017-04960
  • 财政年份:
    2020
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Optimization for Computer Vision and Biomedical Image Analysis
计算机视觉和生物医学图像分析的组合优化
  • 批准号:
    RGPIN-2017-04960
  • 财政年份:
    2018
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
TSP in Combinatorial Optimization and CSP in Theoretical Computer Science
组合优化中的 TSP 和理论计算机科学中的 CSP
  • 批准号:
    18F18746
  • 财政年份:
    2018
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Combinatorial Optimization for Computer Vision and Biomedical Image Analysis
计算机视觉和生物医学图像分析的组合优化
  • 批准号:
    RGPIN-2017-04960
  • 财政年份:
    2017
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Optimization Methods for Computer Vision and Bio-medical Image Analysis
计算机视觉和生物医学图像分析的组合优化方法
  • 批准号:
    298299-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Optimization Methods for Computer Vision and Bio-medical Image Analysis
计算机视觉和生物医学图像分析的组合优化方法
  • 批准号:
    298299-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Optimization Methods for Computer Vision and Bio-medical Image Analysis
计算机视觉和生物医学图像分析的组合优化方法
  • 批准号:
    298299-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Optimization Methods for Computer Vision and Bio-medical Image Analysis
计算机视觉和生物医学图像分析的组合优化方法
  • 批准号:
    298299-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Optimization and Database Theory (Computer Research)
组合优化和数据库理论(计算机研究)
  • 批准号:
    8314575
  • 财政年份:
    1983
  • 资助金额:
    $ 6.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了