Combinatorial Optimization Methods for Computer Vision and Bio-medical Image Analysis
计算机视觉和生物医学图像分析的组合优化方法
基本信息
- 批准号:298299-2012
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Automatic computer/robot vision for manufacturing, health care, security, and multi-media is still largely
"work in progress" and relatively few methods produce consistently reliable results on real data. Sheer size of high-resolution volumetric images in stereo-vision, motion analysis, computer-assisted diagnosis (e.g. MRI, CT), and other applications demands very high level of efficiency from computer vision algorithms. Despite significant progress in the last 10-20 years, the vision community is still widely researching new theories and mathematical concepts that could lead to computationally feasible methods for image segmentation, shape representation, model fitting, stereo, and many other low-level problems forming the base for all computer vision systems. My research concentrates on practical computationally-efficient and mathematically solid models for low-level vision. This topic offers an exciting ground for creative interdisciplinary research linking optimization, statistical physics, information theory, learning, applied differential geometry, and other mathematical sciences. Most low-level vision problems can be formulated as optimization problems using either information-based methodology (e.g. minimum description length principle), or concepts from statistical physics (e.g. posterior energy), or differential geometry (minimum surface). The focus of my proposed research are mathematically solid models in low-level vision and the corresponding fast optimization methods computing either their global minimum or some guaranteed-quality approximation. Such optimization problems are a challenge for the state of the art in discrete combinatorial algorithms and continuous variational techniques. Firstly, it was shown that many problems in vision are intrinsically difficult (NP-hard), thus effective approximations must be explored. Secondly, computational efficiency and scalability of the proposed optimization algorithms is crucial when a solution is sought on huge 3D or 4D image volumes common in vision and medical imaging.
用于制造业、医疗保健、安全和多媒体的自动计算机/机器人视觉仍然在很大程度上
“正在进行的工作”和相对较少的方法在真实的数据上产生一致可靠的结果。立体视觉、运动分析、计算机辅助诊断(例如MRI、CT)和其他应用中的高分辨率体积图像的纯粹尺寸要求计算机视觉算法具有非常高的效率水平。尽管在过去的10-20年中取得了重大进展,但视觉界仍在广泛研究新的理论和数学概念,这些理论和概念可能会导致图像分割,形状表示,模型拟合,立体声和许多其他低级问题的计算可行方法,这些问题构成了所有计算机视觉系统的基础。我的研究集中在实用的计算效率和数学上的低层次视觉模型。本主题为创造性的跨学科研究提供了一个令人兴奋的基础,将优化,统计物理,信息论,学习,应用微分几何和其他数学科学联系起来。大多数低级视觉问题可以用基于信息的方法(例如最小描述长度原则)或统计物理学(例如后验能量)或微分几何(最小表面)的概念来表示为优化问题。 我建议的研究重点是在低层次的视觉和相应的快速优化方法计算其全局最小值或一些高质量的近似数学模型。这样的优化问题是离散组合算法和连续变分技术的最新技术的挑战。首先,它表明,在视觉中的许多问题本质上是困难的(NP-难),因此有效的近似必须探索。其次,当在视觉和医学成像中常见的巨大3D或4D图像体积上寻求解决方案时,所提出的优化算法的计算效率和可扩展性至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boykov, Yuri其他文献
Interactive Segmentation with Super-Labels.
- DOI:
10.1007/978-3-642-23094-3_11 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Delong, Andrew;Gorelick, Lena;Schmidt, Frank R;Veksler, Olga;Boykov, Yuri - 通讯作者:
Boykov, Yuri
Fast Approximate Energy Minimization with Label Costs
- DOI:
10.1007/s11263-011-0437-z - 发表时间:
2012-01-01 - 期刊:
- 影响因子:19.5
- 作者:
Delong, Andrew;Osokin, Anton;Boykov, Yuri - 通讯作者:
Boykov, Yuri
Energy-Based Geometric Multi-model Fitting
- DOI:
10.1007/s11263-011-0474-7 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:19.5
- 作者:
Isack, Hossam;Boykov, Yuri - 通讯作者:
Boykov, Yuri
Performance of an automated segmentation algorithm for 3D MR renography
- DOI:
10.1002/mrm.21240 - 发表时间:
2007-06-01 - 期刊:
- 影响因子:3.3
- 作者:
Rusinek, Henrv;Boykov, Yuri;Lee, Vivian S. - 通讯作者:
Lee, Vivian S.
Graph cuts and efficient N-D image segmentation
- DOI:
10.1007/s11263-006-7934-5 - 发表时间:
2006-11-01 - 期刊:
- 影响因子:19.5
- 作者:
Boykov, Yuri;Funka-Lea, Gareth - 通讯作者:
Funka-Lea, Gareth
Boykov, Yuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boykov, Yuri', 18)}}的其他基金
Combinatorial Optimization for Computer Vision and Biomedical Image Analysis
计算机视觉和生物医学图像分析的组合优化
- 批准号:
RGPIN-2017-04960 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Optimization for Computer Vision and Biomedical Image Analysis
计算机视觉和生物医学图像分析的组合优化
- 批准号:
RGPIN-2017-04960 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Optimization for Computer Vision and Biomedical Image Analysis
计算机视觉和生物医学图像分析的组合优化
- 批准号:
RGPIN-2017-04960 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Optimization for Computer Vision and Biomedical Image Analysis
计算机视觉和生物医学图像分析的组合优化
- 批准号:
RGPIN-2017-04960 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Optimization for Computer Vision and Biomedical Image Analysis
计算机视觉和生物医学图像分析的组合优化
- 批准号:
RGPIN-2017-04960 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Optimization Methods for Computer Vision and Bio-medical Image Analysis
计算机视觉和生物医学图像分析的组合优化方法
- 批准号:
298299-2012 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
High-Performance Workstations for Combinatorial Approach to Multi-dimensional Big Data in Computer Vision and Bio-medical Image Analysis
用于计算机视觉和生物医学图像分析中多维大数据组合方法的高性能工作站
- 批准号:
473012-2015 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)
Combinatorial Optimization Methods for Computer Vision and Bio-medical Image Analysis
计算机视觉和生物医学图像分析的组合优化方法
- 批准号:
298299-2012 - 财政年份:2013
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Optimization Methods for Computer Vision and Bio-medical Image Analysis
计算机视觉和生物医学图像分析的组合优化方法
- 批准号:
298299-2012 - 财政年份:2012
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial algorithms for computer vision and image-based 3d modelling
用于计算机视觉和基于图像的 3D 建模的组合算法
- 批准号:
298299-2007 - 财政年份:2011
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Hybrid artificial intelligence methods for combinatorial optimization
用于组合优化的混合人工智能方法
- 批准号:
RGPIN-2022-03964 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Hybrid artificial intelligence methods for combinatorial optimization
用于组合优化的混合人工智能方法
- 批准号:
DGECR-2022-00385 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Launch Supplement
New combinatorial optimization methods for precursor cell culture and tissue engineering
前体细胞培养和组织工程的新组合优化方法
- 批准号:
288223-2013 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
III: Small: Collaborative Research: Explaining Unsupervised Learning: Combinatorial Optimization Formulations, Methods and Applications
III:小:协作研究:解释无监督学习:组合优化公式、方法和应用
- 批准号:
1908530 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Explaining Unsupervised Learning: Combinatorial Optimization Formulations, Methods and Applications
III:小:协作研究:解释无监督学习:组合优化公式、方法和应用
- 批准号:
1910306 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Continuing Grant
Applying Methods from Combinatorial Optimization in Solving Large-Scale Real World Problems
应用组合优化方法解决大规模现实世界问题
- 批准号:
36740-2013 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
AF:Small: Continuous Perspectives on Accelerated Methods for Combinatorial Optimization
AF:Small:组合优化加速方法的持续视角
- 批准号:
1718342 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
New combinatorial optimization methods for precursor cell culture and tissue engineering
前体细胞培养和组织工程的新组合优化方法
- 批准号:
288223-2013 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Applying Methods from Combinatorial Optimization in Solving Large-Scale Real World Problems
应用组合优化方法解决大规模现实世界问题
- 批准号:
36740-2013 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual