Error Resilient Machine Learning Systems
容错机器学习系统
基本信息
- 批准号:506681-2017
- 负责人:
- 金额:$ 17.85万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Strategic Projects - Group
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Self Driving Cars (SDCs) or autonomous vehicles have become increasingly popular, and they promise to revolutionize our lives in the near future. Already, companies such as Google, Uber, Nutonomy, Volvo, are deploying SDCs on roads, and have shown that SDCs are almost ready for production use. Many Canadian provinces have already passed laws allowing the use of SDCs on public roads, e.g., Ontario. Experts have predicted the large-scale adoption of SDCs within the next 5 to 10 years. SDCs offer many societal benefits such as drastically reduce the number of accidents resulting in loss of life and property, and make driving safer. SDCs today rely upon complex algorithms executing on specialized silicon chips for their key tasks such as pedestrian detection. Any error in either the software or the hardware can adversely affect the safety of the car. Unfortunately, hardware is becoming less and less reliable due to the scaling of silicon devices to smaller sizes, which while aiding performance, has made them much more susceptible to particle strikes and manufacturing defects. Unlike software faults, faults in the hardware can arise unpredictably and at random locations, even if the software has been well tested. Thus, they cannot be eliminated at design time. Further, they can lead to devastating consequences as software is often unprepared to deal with hardware faults. Therefore, there is a compelling need to make the computer chips in SDCs reliable and to ensure that hardware faults do not lead to safety compromises in SDCs. This proposal will investigate both software and hardware techniques for ensuring the reliability of the systems deployed in SDCs. The main idea is to innovatively co-design the hardware and software deployed in SDCs to leverage the intrinsic resilience afforded by software, design the hardware to provide tunable reliability, and explore innovative software algorithms that are capable of masking or tolerating hardware faults. We will also take into account the power consumption of the chip, and jointly optimize both power and reliability.
自动驾驶汽车(SDCs)或自动驾驶汽车越来越受欢迎,它们有望在不久的将来彻底改变我们的生活。谷歌、Uber、Nutonomy、沃尔沃等公司已经在道路上部署了自动驾驶汽车,并表明自动驾驶汽车几乎可以投入生产使用。加拿大许多省份已经通过法律,允许在公共道路上使用SDCs,例如安大略省。专家预测,在未来5到10年内,可持续发展目标将被大规模采用。自动驾驶汽车提供了许多社会效益,例如大幅减少造成生命和财产损失的事故数量,并使驾驶更安全。如今,SDCs依靠复杂的算法在专门的硅芯片上执行关键任务,如行人检测。软件或硬件的任何错误都可能对汽车的安全产生不利影响。不幸的是,由于硅器件的尺寸越来越小,硬件变得越来越不可靠,这在提高性能的同时,也使它们更容易受到粒子撞击和制造缺陷的影响。与软件故障不同,硬件故障可能出现在不可预测的随机位置,即使软件已经经过了很好的测试。因此,它们不能在设计时消除。此外,它们可能导致毁灭性的后果,因为软件通常没有准备好处理硬件故障。因此,迫切需要使sdc中的计算机芯片可靠,并确保硬件故障不会导致sdc中的安全妥协。本提案将研究软件和硬件技术,以确保部署在SDCs中的系统的可靠性。主要思想是创新地协同设计部署在sdc中的硬件和软件,以利用软件提供的内在弹性,设计硬件以提供可调的可靠性,并探索能够屏蔽或容忍硬件故障的创新软件算法。我们也会考虑芯片的功耗,共同优化功耗和可靠性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aamodt, Tor其他文献
Aamodt, Tor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aamodt, Tor', 18)}}的其他基金
Energy-Efficient Programmable Accelerators
节能可编程加速器
- 批准号:
RGPIN-2016-05819 - 财政年份:2021
- 资助金额:
$ 17.85万 - 项目类别:
Discovery Grants Program - Individual
Energy-Efficient Programmable Accelerators
节能可编程加速器
- 批准号:
RGPIN-2016-05819 - 财政年份:2020
- 资助金额:
$ 17.85万 - 项目类别:
Discovery Grants Program - Individual
Energy-Efficient Programmable Accelerators
节能可编程加速器
- 批准号:
RGPIN-2016-05819 - 财政年份:2019
- 资助金额:
$ 17.85万 - 项目类别:
Discovery Grants Program - Individual
Energy-Efficient Programmable Accelerators
节能可编程加速器
- 批准号:
RGPIN-2016-05819 - 财政年份:2018
- 资助金额:
$ 17.85万 - 项目类别:
Discovery Grants Program - Individual
Energy-Efficient Programmable Accelerators
节能可编程加速器
- 批准号:
493008-2016 - 财政年份:2018
- 资助金额:
$ 17.85万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Error Resilient Machine Learning Systems
容错机器学习系统
- 批准号:
506681-2017 - 财政年份:2018
- 资助金额:
$ 17.85万 - 项目类别:
Strategic Projects - Group
Energy-Efficient Programmable Accelerators
节能可编程加速器
- 批准号:
RGPIN-2016-05819 - 财政年份:2017
- 资助金额:
$ 17.85万 - 项目类别:
Discovery Grants Program - Individual
Error Resilient Machine Learning Systems
容错机器学习系统
- 批准号:
506681-2017 - 财政年份:2017
- 资助金额:
$ 17.85万 - 项目类别:
Strategic Projects - Group
Designing Efficient and Resilient Deep Learning Accelerators using an AI Supercomputer
使用人工智能超级计算机设计高效且有弹性的深度学习加速器
- 批准号:
RTI-2018-01038 - 财政年份:2017
- 资助金额:
$ 17.85万 - 项目类别:
Research Tools and Instruments
Energy-Efficient Programmable Accelerators
节能可编程加速器
- 批准号:
493008-2016 - 财政年份:2017
- 资助金额:
$ 17.85万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似海外基金
PFI-RP: Resilient and Energy-Efficient Memory Chips for Enhanced Mobile AI and Personalized Machine Learning
PFI-RP:用于增强移动人工智能和个性化机器学习的弹性和节能内存芯片
- 批准号:
2345655 - 财政年份:2024
- 资助金额:
$ 17.85万 - 项目类别:
Standard Grant
Resilient Remote Environment Emulation for Human-to-Machine Communication
用于人机通信的弹性远程环境仿真
- 批准号:
DP240101064 - 财政年份:2024
- 资助金额:
$ 17.85万 - 项目类别:
Discovery Projects
C-MAIN NL : Cyber-resilient machine-to-machine and IoT-enabled networks for ports and transport in the Netherlands
C-MAIN NL:用于荷兰港口和运输的网络弹性机器对机器和支持物联网的网络
- 批准号:
10020265 - 财政年份:2022
- 资助金额:
$ 17.85万 - 项目类别:
Collaborative R&D
Towards Scalable, Resilient, and Interpretable Approaches for Machine Learning based Malware Detectors
为基于机器学习的恶意软件检测器提供可扩展、有弹性和可解释的方法
- 批准号:
RGPIN-2020-04738 - 财政年份:2022
- 资助金额:
$ 17.85万 - 项目类别:
Discovery Grants Program - Individual
Dynamic Network Traffic Identification with Scalable and Resilient Machine Learning
通过可扩展且有弹性的机器学习进行动态网络流量识别
- 批准号:
576922-2022 - 财政年份:2022
- 资助金额:
$ 17.85万 - 项目类别:
Alliance Grants
FMSG: Cyber: Resilient and Reliable Cyber-Physical-Human-Machine Teams: Toward Future of Cybermanufacturing
FMSG:网络:有弹性且可靠的网络物理人机团队:迈向网络制造的未来
- 批准号:
2134367 - 财政年份:2022
- 资助金额:
$ 17.85万 - 项目类别:
Standard Grant
Towards Scalable, Resilient, and Interpretable Approaches for Machine Learning based Malware Detectors
为基于机器学习的恶意软件检测器提供可扩展、有弹性和可解释的方法
- 批准号:
RGPIN-2020-04738 - 财政年份:2021
- 资助金额:
$ 17.85万 - 项目类别:
Discovery Grants Program - Individual
CRII: SaTC: GridAI: Physics-based Machine Learning Models and Algorithms for Attack-Resilient Smart Grid Infrastructure
CRII:SaTC:GridAI:基于物理的机器学习模型和算法,用于抵御攻击的智能电网基础设施
- 批准号:
2105269 - 财政年份:2021
- 资助金额:
$ 17.85万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative: Using Machine Learning to Build More Resilient and Transparent Computer Systems
SaTC:核心:媒介:协作:使用机器学习构建更具弹性和透明的计算机系统
- 批准号:
2113345 - 财政年份:2021
- 资助金额:
$ 17.85万 - 项目类别:
Standard Grant
Towards Scalable, Resilient, and Interpretable Approaches for Machine Learning based Malware Detectors
为基于机器学习的恶意软件检测器提供可扩展、有弹性和可解释的方法
- 批准号:
RGPIN-2020-04738 - 财政年份:2020
- 资助金额:
$ 17.85万 - 项目类别:
Discovery Grants Program - Individual