Machine learning and blockchain-backed optimized assignment matching for PSWs to improve understaffing and risk during the COVID-19 outbreak
机器学习和区块链支持的 PSW 优化分配匹配,以改善 COVID-19 爆发期间的人手不足和风险
基本信息
- 批准号:554458-2020
- 负责人:
- 金额:$ 4.71万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Applied Research Rapid Response to COVID-19
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The COVID-19 pandemic exposes systemic weakness in how the Personal Support Worker (PSW) industry is operated here in Canada. Lack of validated proof of certifications and microcredentials (first aid, safety training, background checks, etc.) leads to hiring delays, understaffing, and potential risks to patients. This in turn causes issues for PSWs, including low pay, inefficient scheduling, underemployment, and has resulted in an unsustainable PSW "gig economy." TriNetra is collaborating with ConnexHealth to implement a system for verifying PSW qualifications, achievements, and certifications. They are proposing to collaborate with Seneca to extend the features of this system to include capabilities to match candidates to job assignments based on their entire profiles, including certifications, training, geography, work history, and availability. This will help the COVID crisis by reducing understaffing at care facilities due to difficulty in validating the credentials of potential workers, eliminating travel and skills mismatches between PSWs and their given assignments; and improving PSW quality of life through better assignment matching, recognition for training, and less travel.
This project will initially create a full-featured PSW community portal with blockchain-based credentialing and a machine learning/artificial intelligence-based matching system to address the current need for better and more reliable credentialing and placement software for PSWs. The portal will automatically create individual PSW assignments and schedules to encompass all aspects of their training, availability, and geography. The first two phases of the project will result in a requirements report and optimized matching system to be deployed within the first 12 weeks of the project, and a fully functional system at completion of the 24 week project. This would provide immediate benefit to help reduce understaffing in long-term care facilities and assist PSWs in faster employment at better-matched assignments.
COVID-19 大流行暴露了加拿大个人支持工作者 (PSW) 行业运营方式的系统性弱点。缺乏经过验证的认证和微证书证明(急救、安全培训、背景调查等)会导致招聘延误、人手不足以及给患者带来潜在风险。这反过来又给私营工人带来了问题,包括工资低、调度效率低、就业不足,并导致了不可持续的私营工人“零工经济”。 TriNetra 正在与 ConnexHealth 合作实施一个验证 PSW 资格、成就和认证的系统。他们提议与 Seneca 合作,扩展该系统的功能,包括根据候选人的完整资料(包括认证、培训、地理位置、工作经历和可用性)将候选人与工作分配相匹配的功能。这将有助于缓解新冠危机,减少护理机构因难以验证潜在工人的资格而造成的人手不足,消除私人护理工作者与其指定任务之间的旅行和技能不匹配;通过更好的任务匹配、培训认可和减少出差来提高 PSW 的生活质量。
该项目最初将创建一个功能齐全的 PSW 社区门户,具有基于区块链的认证和基于机器学习/人工智能的匹配系统,以满足当前 PSW 对更好、更可靠的认证和安置软件的需求。该门户将自动创建个人 PSW 分配和时间表,以涵盖其培训、可用性和地理位置的各个方面。该项目的前两个阶段将在项目的前 12 周内生成一份需求报告和优化的匹配系统,并在 24 周的项目完成时生成一个功能齐全的系统。这将带来立竿见影的好处,有助于减少长期护理机构的人手不足,并帮助私人护理工作者更快地找到更匹配的工作岗位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leaver, Chad其他文献
Unmet healthcare need, gender, and health inequalities in Canada
- DOI:
10.1016/j.healthpol.2008.11.002 - 发表时间:
2009-06-01 - 期刊:
- 影响因子:3.3
- 作者:
Bryant, Toba;Leaver, Chad;Dunn, James - 通讯作者:
Dunn, James
Valuing National Effects of Digital Health Investments: An Applied Method
- DOI:
10.3233/978-1-61499-488-6-165 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:0
- 作者:
Hagens, Simon;Zelmer, Jennifer;Leaver, Chad - 通讯作者:
Leaver, Chad
Valuing Citizen Access to Digital Health Services: Applied Value-Based Outcomes in the Canadian Context and Tools for Modernizing Health Systems
- DOI:
10.2196/12277 - 发表时间:
2019-06-06 - 期刊:
- 影响因子:7.4
- 作者:
Hackett, Christina;Brennen, Kelsey;Leaver, Chad - 通讯作者:
Leaver, Chad
Leaver, Chad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leaver, Chad', 18)}}的其他基金
Development of knowledge base for contextualized recommendation engine for the 'Your Doctor Online' telehealth platform
为“您的在线医生”远程医疗平台开发情境化推荐引擎知识库
- 批准号:
555466-2020 - 财政年份:2020
- 资助金额:
$ 4.71万 - 项目类别:
Applied Research and Development Grants - Level 1
Development of a universal medical form reader
通用医疗表格阅读器的开发
- 批准号:
560436-2020 - 财政年份:2020
- 资助金额:
$ 4.71万 - 项目类别:
Applied Research and Development Grants - Level 1
Recombinant protein production in prokaryotic and eukaryotic heterologous hosts for serological assays for COVID-19
原核和真核异源宿主中的重组蛋白生产用于 COVID-19 血清学检测
- 批准号:
551372-2020 - 财政年份:2020
- 资助金额:
$ 4.71万 - 项目类别:
Applied Research Rapid Response to COVID-19
Facilitating text comprehension of long-form text
促进长文本的文本理解
- 批准号:
558876-2020 - 财政年份:2020
- 资助金额:
$ 4.71万 - 项目类别:
Engage Plus Grants for Colleges
Seneca Centre for Innovation in Life Sciences (SCILS)
塞内卡生命科学创新中心 (SCILS)
- 批准号:
544347-2019 - 财政年份:2020
- 资助金额:
$ 4.71万 - 项目类别:
College and Community Innovation Program
Research on software-aided long-form text comprehension
软件辅助长篇文本理解研究
- 批准号:
549520-2019 - 财政年份:2020
- 资助金额:
$ 4.71万 - 项目类别:
Applied Research and Development Grants - Level 1
Non-organic Solvent Method of Extracting N-Acetyl glucosamine from a fermentation broth
从发酵液中提取N-乙酰氨基葡萄糖的非有机溶剂法
- 批准号:
555617-2020 - 财政年份:2020
- 资助金额:
$ 4.71万 - 项目类别:
Applied Research and Development Grants - Level 1
Next Generation candidate screening and assessment platform featuring psychological profiling though gamification
下一代候选人筛选和评估平台,通过游戏化进行心理分析
- 批准号:
553875-2020 - 财政年份:2020
- 资助金额:
$ 4.71万 - 项目类别:
Applied Research and Development Grants - Level 1
Incremental Video Categorization Using Audio and Video Features
使用音频和视频功能进行增量视频分类
- 批准号:
554151-2020 - 财政年份:2020
- 资助金额:
$ 4.71万 - 项目类别:
Applied Research and Development Grants - Level 2
Using TensorFlow for Analysis, Learning and Optimization of Net-Zero Homes Energy Data
使用 TensorFlow 分析、学习和优化净零家庭能源数据
- 批准号:
556133-2020 - 财政年份:2020
- 资助金额:
$ 4.71万 - 项目类别:
Applied Research and Development Grants - Level 1
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
STTR Phase I: A DLT Machine Learning Platform for Blockchain Warehousing
STTR 第一阶段:区块链仓储的 DLT 机器学习平台
- 批准号:
2112345 - 财政年份:2022
- 资助金额:
$ 4.71万 - 项目类别:
Standard Grant
Ethical Perspectives Towards Using Smart Contracts for Patient Consent and Data Protection of Digital Phenotype Data in Machine Learning Environments
在机器学习环境中使用智能合约获得患者同意和数字表型数据数据保护的伦理视角
- 批准号:
10599498 - 财政年份:2022
- 资助金额:
$ 4.71万 - 项目类别:
Next Generation Secure and Collaborative Internet of Things (IoT) System - Leveraging Blockchain for Decentralized Control and Privacy Preserving Machine Learning
下一代安全协作物联网 (IoT) 系统 - 利用区块链进行去中心化控制和隐私保护机器学习
- 批准号:
RGPIN-2021-02970 - 财政年份:2022
- 资助金额:
$ 4.71万 - 项目类别:
Discovery Grants Program - Individual
SBIR Phase II: Reducing Claims Denials in Healthcare Through Blockchain and Machine Learning
SBIR 第二阶段:通过区块链和机器学习减少医疗保健领域的索赔拒绝
- 批准号:
2126982 - 财政年份:2022
- 资助金额:
$ 4.71万 - 项目类别:
Cooperative Agreement
Next Generation Secure and Collaborative Internet of Things (IoT) System - Leveraging Blockchain for Decentralized Control and Privacy Preserving Machine Learning
下一代安全协作物联网 (IoT) 系统 - 利用区块链进行去中心化控制和隐私保护机器学习
- 批准号:
RGPIN-2021-02970 - 财政年份:2021
- 资助金额:
$ 4.71万 - 项目类别:
Discovery Grants Program - Individual
CRII: CNS: Blockchain-based Distributed Machine Learning for Mobile Crowd Sensing
CRII:CNS:用于移动人群感知的基于区块链的分布式机器学习
- 批准号:
2105004 - 财政年份:2021
- 资助金额:
$ 4.71万 - 项目类别:
Standard Grant
Next Generation Secure and Collaborative Internet of Things (IoT) System - Leveraging Blockchain for Decentralized Control and Privacy Preserving Machine Learning
下一代安全协作物联网 (IoT) 系统 - 利用区块链进行去中心化控制和隐私保护机器学习
- 批准号:
DGECR-2021-00187 - 财政年份:2021
- 资助金额:
$ 4.71万 - 项目类别:
Discovery Launch Supplement
STTR Phase II:Blockchain-Enabled Machine Learning on Confidential Data
STTR 第二阶段:基于区块链的机密数据机器学习
- 批准号:
2026404 - 财政年份:2020
- 资助金额:
$ 4.71万 - 项目类别:
Cooperative Agreement
Using Machine Learning and Blockchain Technology to Reduce Drug Diversion in Hospitals
使用机器学习和区块链技术减少医院的药物转移
- 批准号:
10761130 - 财政年份:2020
- 资助金额:
$ 4.71万 - 项目类别:
SBIR Phase I: Blockchain-Enabled Machine Learning on Confidential Data
SBIR 第一阶段:基于区块链的机密数据机器学习
- 批准号:
1914373 - 财政年份:2019
- 资助金额:
$ 4.71万 - 项目类别:
Standard Grant