Fast optimization algorithms for complex personnel scheduling problems
复杂人员调度问题的快速优化算法
基本信息
- 批准号:530544-2018
- 负责人:
- 金额:$ 7.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kronos Canadian Systems Inc. commercializes the Workforce Scheduler software to more than 1,100 organizations across the world, including more than 100 in Canada. This software allows to determine the work shift schedules of employees in various domains including retail, healthcare, leisure and hospitality, and manufacturing. Personnel shift scheduling is a complex combinatorial optimization problem that involves determining for each available employee his working days, the exact shift to work on each working day, and the job(s) to perform in each shift, in order to cover at best the demand in employees for each job. At Kronos, this problem is solved by a mathematical-programming-based optimization algorithm whose core strategies have been developed many years ago. To make the algorithm more robust to the recently integrated complex features, we propose to develop in this project new core strategies, namely, a new decomposition algorithm to split the problem into subproblems, improvement algorithms for solving each subproblem, and a new shift enumeration algorithm. Our main objective is to conceive an efficient and robust algorithm that will be able to solve the practical problem instances encountered by Kronos' clients. To achieve this goal, we will perform mathematical modeling, data analysis, and methodological developments that will involve integer programming, local search, large neighborhood search, and machine learning among others.
The successful results from this research will be integrated into the Workforce Scheduler software. Given that the proposed developments will be at the heart of this software, they will provide a commercial advantage to Kronos that will be in a position to offer an improved software capable of solving large and complex personnel scheduling problems. A Canadian company will thus benefit directly from the positive impacts of this project. Moreover, a large number of Canadian companies/organizations which already use Workforce Scheduler will also benefit indirectly from this project when they will gain access to the new software version. Finally, this project will finance the training of seven MSc, PhD and postdoc students.
Kronos加拿大系统公司将劳动力调度软件商业化,服务于全球1100多家组织,其中包括加拿大的100多家组织。该软件允许确定不同领域的员工轮班时间表,包括零售、医疗保健、休闲和酒店以及制造业。人员轮班调度是一个复杂的组合优化问题,它涉及确定每个可用员工的工作日,每个工作日的确切班次,以及每个班次要执行的工作,以便最好地满足员工对每个工作的需求。在Kronos,这个问题是通过一个基于数学编程的优化算法来解决的,这个算法的核心策略是多年前开发的。为了使算法对最近集成的复杂特征具有更强的鲁棒性,我们在本项目中提出了新的核心策略,即一种新的分解算法将问题分解为子问题,改进求解每个子问题的算法,以及一种新的移位枚举算法。我们的主要目标是构思一种高效且稳健的算法,能够解决Kronos客户遇到的实际问题实例。为了实现这一目标,我们将进行数学建模、数据分析和方法开发,其中包括整数规划、局部搜索、大邻域搜索和机器学习等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DESAULNIERS, Guy其他文献
DESAULNIERS, Guy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DESAULNIERS, Guy', 18)}}的其他基金
Advanced data-driven optimization tools for public transit scheduling and parcel delivery
用于公共交通调度和包裹递送的先进数据驱动优化工具
- 批准号:
520349-2017 - 财政年份:2020
- 资助金额:
$ 7.06万 - 项目类别:
Collaborative Research and Development Grants
Advanced data-driven optimization tools for public transit scheduling and parcel delivery
用于公共交通调度和包裹递送的先进数据驱动优化工具
- 批准号:
520349-2017 - 财政年份:2018
- 资助金额:
$ 7.06万 - 项目类别:
Collaborative Research and Development Grants
Fast optimization algorithms for complex personnel scheduling problems
复杂人员调度问题的快速优化算法
- 批准号:
530544-2018 - 财政年份:2018
- 资助金额:
$ 7.06万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
内容分发网络中的P2P分群分发技术研究
- 批准号:61100238
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
天然生物材料的多尺度力学与仿生研究
- 批准号:10732050
- 批准年份:2007
- 资助金额:200.0 万元
- 项目类别:重点项目
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
气动/结构耦合动力学系统目标敏感性分析的快速准确计算方法及优化设计研究
- 批准号:10402036
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 7.06万 - 项目类别:
Continuing Grant
CAREER: AF: Fast Algorithms for Riemannian Optimization
职业:AF:黎曼优化的快速算法
- 批准号:
2410328 - 财政年份:2023
- 资助金额:
$ 7.06万 - 项目类别:
Continuing Grant
CAREER: AF: Fast Algorithms for Riemannian Optimization
职业:AF:黎曼优化的快速算法
- 批准号:
2239228 - 财政年份:2023
- 资助金额:
$ 7.06万 - 项目类别:
Continuing Grant
CIF: Small: Self-Adaptive Optimization Algorithms with Fast Convergence via Geometry-Adapted Hyper-Parameter Scheduling
CIF:小型:通过几何自适应超参数调度实现快速收敛的自适应优化算法
- 批准号:
2106216 - 财政年份:2021
- 资助金额:
$ 7.06万 - 项目类别:
Standard Grant
Optimization and High-Order Fast Algorithms Applied to Microwave Imaging
应用于微波成像的优化和高阶快速算法
- 批准号:
RGPIN-2014-04142 - 财政年份:2019
- 资助金额:
$ 7.06万 - 项目类别:
Discovery Grants Program - Individual
Fast optimization algorithms for complex personnel scheduling problems
复杂人员调度问题的快速优化算法
- 批准号:
530544-2018 - 财政年份:2019
- 资助金额:
$ 7.06万 - 项目类别:
Collaborative Research and Development Grants
Fast optimization algorithms for complex personnel scheduling problems
复杂人员调度问题的快速优化算法
- 批准号:
530544-2018 - 财政年份:2018
- 资助金额:
$ 7.06万 - 项目类别:
Collaborative Research and Development Grants
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
- 批准号:
1806154 - 财政年份:2018
- 资助金额:
$ 7.06万 - 项目类别:
Continuing Grant
Optimization and High-Order Fast Algorithms Applied to Microwave Imaging
应用于微波成像的优化和高阶快速算法
- 批准号:
RGPIN-2014-04142 - 财政年份:2018
- 资助金额:
$ 7.06万 - 项目类别:
Discovery Grants Program - Individual
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
- 批准号:
1761506 - 财政年份:2017
- 资助金额:
$ 7.06万 - 项目类别:
Continuing Grant