A data driven approach for optimal stochastic control in finance
金融领域最优随机控制的数据驱动方法
基本信息
- 批准号:530985-2018
- 负责人:
- 金额:$ 2.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems in finance naturally arise as stochastic optimal control problems, including for example optimal trade execution, pricing and hedging of variable annuities and multi-period asset allocation. We will investigate a new, data driven approach to handling such stochastic optimal control problems arising from finance. In particular, we propose to use a machine learning approach to constructing the optimal controls directly from the observed data. To understand the issues of this new paradigm, we will use this approach on three problems in finance. The first test problem will involve the optimal multi-period rebalancing of portfolios over a long time frame with taxable accounts. At each of these multiple rebalancing times one would need to take into consideration tax scenarios such as marginal tax rates, capital gains and capital losses.
The second study will involve the timing of optimal multi-period portfolio rebalancing where we seek both optimal times to rebalance and the amounts to reallocate during these times. Our final study involves strategies for portfolios that combines selling options on single assets balanced by the concept of trend following involving baskets of assets. Here one needs to find the best weighting of each part. Canada is a world leader in Machine Learning and AI. The field of financial technology (FinTech) is one area which will benefit from better data analytics and more effective learning methods. This is particularly true
when it comes to managing the risks involved with long term investment allocation problems.
金融中的许多问题自然会以随机最优控制问题的形式出现,例如,包括最优交易执行、可变年金的定价和对冲以及多时期资产配置。我们将研究一种新的、数据驱动的方法来处理由金融产生的这种随机最优控制问题。特别是,我们建议使用机器学习方法来直接从观测数据构造最优控制。为了理解这一新范式的问题,我们将在金融领域的三个问题上使用这种方法。第一个测试问题将涉及在很长一段时间内对有应税账户的投资组合进行最优的多阶段再平衡。在上述多次再平衡中的每一次,人们都需要考虑边际税率、资本利得和资本损失等税收情景。
第二项研究将涉及最优多阶段投资组合再平衡的时机,即我们寻求再平衡的最佳时间和在这些时间内要重新分配的金额。我们的最后一项研究涉及投资组合的策略,这些投资组合结合了单一资产的出售选择,并平衡了涉及一篮子资产的趋势跟随概念。在这里,人们需要找到每个部分的最佳权重。加拿大在机器学习和人工智能方面处于世界领先地位。金融科技领域(金融科技)将受益于更好的数据分析和更有效的学习方法。这一点尤其正确
当谈到管理涉及长期投资配置问题的风险时。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li, Yuying其他文献
Immunotherapy combined with chemotherapy improved clinical outcomes over bevacizumab combined with chemotherapy as first-line therapy in adenocarcinoma patients.
- DOI:
10.1002/cam4.5356 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
Wang, Min;Li, Ji;Xu, Shuhui;Li, Yuying;Li, Jiatong;Yu, Jinming;Tang, Xiaoyong;Zhu, Hui - 通讯作者:
Zhu, Hui
Influence of Atmospheric Phosphorus and Nitrogen Sedimentation on Water Quality in the Middle Route Project of the South-to-North Water Diversion in Henan Province.
河南省南水北调中线工程大气磷、氮沉积对水质的影响
- DOI:
10.3390/ijerph192114346 - 发表时间:
2022-11-02 - 期刊:
- 影响因子:0
- 作者:
Qiu, Yunlin;Zhang, Yun;Lan, Pengcheng;Liu, Han;Wang, Hongtian;Wang, Wanping;Zhao, Peng;Li, Yuying - 通讯作者:
Li, Yuying
Preparation and Biochemical Characteristics of a New IgG-Type Monoclonal Antibody against K Subgroup Avian Leukosis Virus.
- DOI:
10.1021/acsomega.2c06375 - 发表时间:
2023-01-10 - 期刊:
- 影响因子:4.1
- 作者:
Zhang, Xiaochen;Li, Hongmei;Wang, Chengcheng;Du, Yixuan;Li, Yuying;Zhang, Liwei;Huang, Mengjie;Qiu, Jianhua;Guo, Huijun - 通讯作者:
Guo, Huijun
Phosphate-Functionalized Polyethylene with High Adsorption of Uranium(VI)
高吸附铀(VI)的磷酸盐官能化聚乙烯
- DOI:
10.1021/acsomega.7b00375 - 发表时间:
2017-07-01 - 期刊:
- 影响因子:4.1
- 作者:
Shao, Dadong;Li, Yuying;Marwani, Hadi M. - 通讯作者:
Marwani, Hadi M.
Integrated metagenomics and molecular ecological network analysis of bacterial community composition during the phytoremediation of cadmium-contaminated soils by bioenergy crops
生物能源作物修复镉污染土壤过程中细菌群落组成的综合宏基因组学和分子生态网络分析
- DOI:
10.1016/j.ecoenv.2017.07.019 - 发表时间:
2017-11-01 - 期刊:
- 影响因子:6.8
- 作者:
Chen, Zhaojin;Zheng, Yuan;Li, Yuying - 通讯作者:
Li, Yuying
Li, Yuying的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li, Yuying', 18)}}的其他基金
Methodology of Learning Optimal Decisions from Market Data in Financial Technology
金融科技中从市场数据学习最优决策的方法
- 批准号:
RGPIN-2020-04331 - 财政年份:2022
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
Methodology of Learning Optimal Decisions from Market Data in Financial Technology
金融科技中从市场数据学习最优决策的方法
- 批准号:
RGPIN-2020-04331 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
Methodology of Learning Optimal Decisions from Market Data in Financial Technology
金融科技中从市场数据学习最优决策的方法
- 批准号:
RGPIN-2020-04331 - 财政年份:2020
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
Effective Computational Optimization in Data Mining and Financial Applications
数据挖掘和金融应用中的有效计算优化
- 批准号:
RGPIN-2014-03978 - 财政年份:2019
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
A data driven approach for optimal stochastic control in finance
金融领域最优随机控制的数据驱动方法
- 批准号:
530985-2018 - 财政年份:2019
- 资助金额:
$ 2.8万 - 项目类别:
Collaborative Research and Development Grants
A data driven approach for optimal stochastic control in finance
金融领域最优随机控制的数据驱动方法
- 批准号:
530985-2018 - 财政年份:2018
- 资助金额:
$ 2.8万 - 项目类别:
Collaborative Research and Development Grants
Effective Computational Optimization in Data Mining and Financial Applications
数据挖掘和金融应用中的有效计算优化
- 批准号:
RGPIN-2014-03978 - 财政年份:2017
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
Effective Computational Optimization in Data Mining and Financial Applications
数据挖掘和金融应用中的有效计算优化
- 批准号:
RGPIN-2014-03978 - 财政年份:2016
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
Effective Computational Optimization in Data Mining and Financial Applications
数据挖掘和金融应用中的有效计算优化
- 批准号:
RGPIN-2014-03978 - 财政年份:2015
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
Effective Computational Optimization in Data Mining and Financial Applications
数据挖掘和金融应用中的有效计算优化
- 批准号:
RGPIN-2014-03978 - 财政年份:2014
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23K25946 - 财政年份:2024
- 资助金额:
$ 2.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A new data-driven approach to bring humanity into virtual worlds with computer vision
一种新的数据驱动方法,通过计算机视觉将人类带入虚拟世界
- 批准号:
23K28129 - 财政年份:2024
- 资助金额:
$ 2.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A PROGRESS-Driven Approach to Cognitive Outcomes after Traumatic Brain Injury: Advancing Equity, Diversity, and Inclusion through Knowledge Synthesis and Mobilization
创伤性脑损伤后认知结果的进步驱动方法:通过知识合成和动员促进公平、多样性和包容性
- 批准号:
492338 - 财政年份:2023
- 资助金额:
$ 2.8万 - 项目类别:
Operating Grants
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23H01250 - 财政年份:2023
- 资助金额:
$ 2.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
- 批准号:
2896325 - 财政年份:2023
- 资助金额:
$ 2.8万 - 项目类别:
Studentship
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
- 批准号:
2324742 - 财政年份:2023
- 资助金额:
$ 2.8万 - 项目类别:
Continuing Grant
Study on Heavy Rainfall Mechanism by Mathematical and Data-Driven Approach Using Large Ensemble
利用大集合的数学和数据驱动方法研究强降雨机制
- 批准号:
23KF0161 - 财政年份:2023
- 资助金额:
$ 2.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
- 批准号:
10575550 - 财政年份:2023
- 资助金额:
$ 2.8万 - 项目类别:
Semiconductor Biomaterials to Speed Bone Healing: A Bioengineering-Driven Approach
半导体生物材料加速骨骼愈合:生物工程驱动的方法
- 批准号:
10587508 - 财政年份:2023
- 资助金额:
$ 2.8万 - 项目类别:
Enabling the mortgage industry to drive net zero retrofitting through a data-driven portfolio approach
使抵押贷款行业能够通过数据驱动的投资组合方法推动净零改造
- 批准号:
10092176 - 财政年份:2023
- 资助金额:
$ 2.8万 - 项目类别:
Collaborative R&D