Methodology of Learning Optimal Decisions from Market Data in Financial Technology
金融科技中从市场数据学习最优决策的方法
基本信息
- 批准号:RGPIN-2020-04331
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As pension crises deepen in the western world and beyond, efficiently and effectively solving long term dynamic asset allocation problems becomes more critical than ever. The trend from Defined Benefit to Defined Contribution is particularly problematic for lower income population. Automatic pension investing can potentially boost retirement confidence, benefiting particularly women and financially disadvantaged people. Can machine learning offer a new solution to dynamic asset allocation in general? This is a question which can best be addressed by combining expertise from the financial mathematics and machine learning optimization. The need for research on machine learning in financial technology is illustrated by recent creations of Borealis AI Institute by RBC and other similar organizations. The standard approach in mathematical finance has always started from extracting information from market data. Until recently, the approach has been a 2-tiered solution. First, a parametric stochastic model is estimated from the data. Second, relevant answers, e.g., investment strategies, are computed from the assumed parametric model. Serious obstacles have been encountered from this 2-tirered approach in mathematical finance. Since the market dynamics are complex and changeable, the assumed model is inevitably erroneous. When optimal decisions are subsequently derived, errors in the assumed model are often magnified. This limits the applicability of the computed solution. In addition, many dynamic portfolio optimization and risk management problems, following the classical parametric approach, are incredibly hard to solve, even though the model is flawed. A new paradigm is emerging with the promise of a brand new data driven solution. Often, the relevant financial solutions are optimal decisions. Data driven optimization aims to determine the optimal solutions directly from market data, representing market stochasticity. This direct optimization framework bypasses the intermediate step of making erroneous model assumptions. Surprisingly, this approach often avoids computational challenges from solving model based optimal control problems. To succeed in this emerging interdisciplinary field, research experience in optimization, financial modelling, and machine learning is crucial. My research expertise in all three fields has uniquely positioned me to explore the landscape of this exciting area. The goal of this research is to develop a data driven methodology, focusing specifically on financial markets , to learn more complex but practically relevant dynamic decisions directly from market data. Specifically we will (a) develop efficient algorithms solving (non-parametric) sample path based optimization problems with suitable objectives for financial strategies; (b) ensure that optimal data driven model is effective and robust but interpretable through thorough empirical validation; (c) augment sufficiently high quality data.
随着养老金危机在西方世界及其他地区的深化,有效解决长期动态资产配置问题变得比以往任何时候都更加重要。从固定福利到固定缴款的趋势对低收入人群来说尤其成问题。自动养老金投资可能会提高退休信心,特别有利于妇女和经济上处于不利地位的人。机器学习能为动态资产配置提供新的解决方案吗?这是一个可以通过结合金融数学和机器学习优化的专业知识来解决的问题。RBC和其他类似组织最近创建的Borealis AI研究所说明了金融技术中机器学习研究的必要性。 数理金融学的标准方法总是从市场数据中提取信息开始。直到最近,该方法一直是一个两层的解决方案。首先,从数据估计参数随机模型。第二,相关的答案,例如,投资策略,从假设的参数模型计算。严重的障碍已经遇到了从这个两个厌倦的方法在数学金融。由于市场动态是复杂多变的,假设的模型不可避免地是错误的。当最佳决策随后得出,在假设的模型中的错误往往被放大。这限制了计算解的适用性。此外,许多动态投资组合优化和风险管理问题,按照经典的参数方法,是非常难以解决的,即使模型是有缺陷的。 一个新的范例正在出现,并承诺提供全新的数据驱动解决方案。通常,相关的财务解决方案是最佳决策。数据驱动优化旨在直接从市场数据中确定最优解,代表市场随机性。这种直接优化框架绕过了做出错误模型假设的中间步骤。令人惊讶的是,这种方法通常避免了解决基于模型的最优控制问题的计算挑战。为了在这个新兴的跨学科领域取得成功,优化,金融建模和机器学习方面的研究经验至关重要。我在这三个领域的研究专长使我能够探索这一令人兴奋的领域的前景。这项研究的目标是开发一种数据驱动的方法,特别关注金融市场,直接从市场数据中学习更复杂但实际相关的动态决策。具体而言,我们将(a)开发有效的算法,解决(非参数)基于样本路径的优化问题,并为金融策略提供合适的目标;(B)确保最佳数据驱动模型是有效和稳健的,但通过彻底的经验验证是可解释的;(c)增加足够高质量的数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li, Yuying其他文献
Immunotherapy combined with chemotherapy improved clinical outcomes over bevacizumab combined with chemotherapy as first-line therapy in adenocarcinoma patients.
- DOI:
10.1002/cam4.5356 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
Wang, Min;Li, Ji;Xu, Shuhui;Li, Yuying;Li, Jiatong;Yu, Jinming;Tang, Xiaoyong;Zhu, Hui - 通讯作者:
Zhu, Hui
Influence of Atmospheric Phosphorus and Nitrogen Sedimentation on Water Quality in the Middle Route Project of the South-to-North Water Diversion in Henan Province.
河南省南水北调中线工程大气磷、氮沉积对水质的影响
- DOI:
10.3390/ijerph192114346 - 发表时间:
2022-11-02 - 期刊:
- 影响因子:0
- 作者:
Qiu, Yunlin;Zhang, Yun;Lan, Pengcheng;Liu, Han;Wang, Hongtian;Wang, Wanping;Zhao, Peng;Li, Yuying - 通讯作者:
Li, Yuying
Preparation and Biochemical Characteristics of a New IgG-Type Monoclonal Antibody against K Subgroup Avian Leukosis Virus.
- DOI:
10.1021/acsomega.2c06375 - 发表时间:
2023-01-10 - 期刊:
- 影响因子:4.1
- 作者:
Zhang, Xiaochen;Li, Hongmei;Wang, Chengcheng;Du, Yixuan;Li, Yuying;Zhang, Liwei;Huang, Mengjie;Qiu, Jianhua;Guo, Huijun - 通讯作者:
Guo, Huijun
Phosphate-Functionalized Polyethylene with High Adsorption of Uranium(VI)
高吸附铀(VI)的磷酸盐官能化聚乙烯
- DOI:
10.1021/acsomega.7b00375 - 发表时间:
2017-07-01 - 期刊:
- 影响因子:4.1
- 作者:
Shao, Dadong;Li, Yuying;Marwani, Hadi M. - 通讯作者:
Marwani, Hadi M.
Integrated metagenomics and molecular ecological network analysis of bacterial community composition during the phytoremediation of cadmium-contaminated soils by bioenergy crops
生物能源作物修复镉污染土壤过程中细菌群落组成的综合宏基因组学和分子生态网络分析
- DOI:
10.1016/j.ecoenv.2017.07.019 - 发表时间:
2017-11-01 - 期刊:
- 影响因子:6.8
- 作者:
Chen, Zhaojin;Zheng, Yuan;Li, Yuying - 通讯作者:
Li, Yuying
Li, Yuying的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li, Yuying', 18)}}的其他基金
Methodology of Learning Optimal Decisions from Market Data in Financial Technology
金融科技中从市场数据学习最优决策的方法
- 批准号:
RGPIN-2020-04331 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
A data driven approach for optimal stochastic control in finance
金融领域最优随机控制的数据驱动方法
- 批准号:
530985-2018 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Collaborative Research and Development Grants
Methodology of Learning Optimal Decisions from Market Data in Financial Technology
金融科技中从市场数据学习最优决策的方法
- 批准号:
RGPIN-2020-04331 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Effective Computational Optimization in Data Mining and Financial Applications
数据挖掘和金融应用中的有效计算优化
- 批准号:
RGPIN-2014-03978 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
A data driven approach for optimal stochastic control in finance
金融领域最优随机控制的数据驱动方法
- 批准号:
530985-2018 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Collaborative Research and Development Grants
A data driven approach for optimal stochastic control in finance
金融领域最优随机控制的数据驱动方法
- 批准号:
530985-2018 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Collaborative Research and Development Grants
Effective Computational Optimization in Data Mining and Financial Applications
数据挖掘和金融应用中的有效计算优化
- 批准号:
RGPIN-2014-03978 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Effective Computational Optimization in Data Mining and Financial Applications
数据挖掘和金融应用中的有效计算优化
- 批准号:
RGPIN-2014-03978 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Effective Computational Optimization in Data Mining and Financial Applications
数据挖掘和金融应用中的有效计算优化
- 批准号:
RGPIN-2014-03978 - 财政年份:2015
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Effective Computational Optimization in Data Mining and Financial Applications
数据挖掘和金融应用中的有效计算优化
- 批准号:
RGPIN-2014-03978 - 财政年份:2014
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
Collaborative Research: ECCS: Small: Personalized RF Sensing: Learning Optimal Representations of Human Activities and Ethogram on the Fly
合作研究:ECCS:小型:个性化射频传感:学习人类活动的最佳表示和动态行为图
- 批准号:
2233503 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Improving STEM K-12 Learning Using Optimal Spaced Retrieval in an Existing Educational Technology Platform
在现有教育技术平台中使用最佳间隔检索改进 STEM K-12 学习
- 批准号:
2301130 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
BRITE Pivot: Learning-based Optimal Control of Streamflow with Potentially Infeasible Time-bound Constraints for Flood Mitigation
BRITE Pivot:基于学习的水流优化控制,具有可能不可行的防洪时限约束
- 批准号:
2226936 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Improving Interpretable Machine Learning for Plasmas: Towards Physical Insight, Data-Driven Models, and Optimal Sensing
改进等离子体的可解释机器学习:迈向物理洞察、数据驱动模型和最佳传感
- 批准号:
2329765 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
Structure Analysis of Science and Mathematics Problems and Application for Individually Optimal Learning
科学和数学问题的结构分析及其在个体最优学习中的应用
- 批准号:
23K02748 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Zero-User-Adjustment Learning Classifier System for Optimal Performance
零用户调整学习分类器系统以获得最佳性能
- 批准号:
23KJ0993 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: ECCS: Small: Personalized RF Sensing: Learning Optimal Representations of Human Activities and Ethogram on the Fly
合作研究:ECCS:小型:个性化射频传感:学习人类活动的最佳表示和动态行为图
- 批准号:
2233536 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Optimal control approach to machine learning with physical explainability
具有物理可解释性的机器学习最优控制方法
- 批准号:
23H01436 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SCH: Spine-Hip Exoskeletons with Learning-Based Optimal Control for Low Back Pain Alleviation
SCH:具有基于学习的最佳控制的脊柱-髋部外骨骼,可缓解腰痛
- 批准号:
10816884 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别: