Some enumerative results on polynomials over a finite field

有限域上多项式的一些枚举结果

基本信息

  • 批准号:
    551667-2020
  • 负责人:
  • 金额:
    $ 0.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    University Undergraduate Student Research Awards
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
无摘要- Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kuttner, Simon其他文献

Kuttner, Simon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kuttner, Simon', 18)}}的其他基金

Enumeration of polynomials with prescribed coefficients over a finite field
有限域上具有指定系数的多项式的枚举
  • 批准号:
    564118-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 0.33万
  • 项目类别:
    University Undergraduate Student Research Awards
Some enumerative results on polynomials over a finite field
有限域上多项式的一些枚举结果
  • 批准号:
    539251-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 0.33万
  • 项目类别:
    University Undergraduate Student Research Awards

相似海外基金

Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Fellowship Award
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
  • 批准号:
    2405191
  • 财政年份:
    2024
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Conference: Conference on Enumerative and Algebraic Combinatorics
会议:枚举与代数组合学会议
  • 批准号:
    2344639
  • 财政年份:
    2024
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302262
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Refinement and q-deformation of topological recursion and their applications
拓扑递归的细化和q变形及其应用
  • 批准号:
    23K12968
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dualities in Enumerative Algebraic Geometry
枚举代​​数几何中的对偶性
  • 批准号:
    2302117
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302263
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
  • 批准号:
    23K17298
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了