E-commerce Distribution Network Capacity Planning and Supply Chain Modelling

电子商务分销网络容量规划和供应链建模

基本信息

  • 批准号:
    552982-2020
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Applied Research and Development Grants - Level 1
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Carriers constantly face the challenge of allocating capacity for Less-Than-Truckload (LTL) and parcel deliveries in their transportation network. The challenge stems from the fact that standards for weight limits and pricing schemes that are dependent on volume density, dimensions, and handling keep changing, and this in turn has an impact on profitability. LTL loads are usually several pallet loads of goods that do not fill up a truck, whereas parcels are individual packages or parcels that are not palletized, and take up significantly less space on a truck when compared to LTL's. Furthermore, parcels are usually loaded on smaller trucks in order to do the last mile delivery to the end customer. The volume of the parcel business has increased dramatically over the years thanks to e-retailing. In 2018, 87 billion parcels were shipped globally, and in 2025, the volume is estimated to be 200 billion. Given the differences in handling LTL loads from parcels, it is typical for carriers to use a dedicated fleet for each type of service. Unfortunately, this means that trucks will not be fully utilized, and the cost of transportation will increase. Typically, transportation costs represent 65% of the total logistics costs, and it is imperative that every effort is made to reduce this cost as much as possible. The research aims to develop a decision-making model for carriers to support operations, tactical, and strategic decisions regarding capacity allocation and revenue management. That is, given a fixed transportation capacity, how should a carrier optimally allocate LTL and parcel loads in order to maximize the utilization of the trucks and reduce their costs. The research will look into the feasibility of mixing LTL and parcels loads in a single truck.
承运人经常面临在其运输网络中分配零担(LTL)和包裹交付能力的挑战。 这一挑战源于这样一个事实,即取决于体积密度、尺寸和处理的重量限制和定价方案的标准不断变化,这反过来又对盈利能力产生影响。 LTL负载通常是几个托盘负载的货物,不装满卡车,而包裹是单独的包裹或包裹,不被包裹,并且与LTL相比,在卡车上占用的空间明显较少。 此外,包裹通常装载在较小的卡车上,以便将最后一英里交付给最终客户。 由于电子零售,包裹业务的数量多年来急剧增加。 2018年,全球运送了870亿个包裹,到2025年,预计将达到2000亿个包裹。 考虑到处理来自包裹的LTL负载的差异,承运人通常会为每种服务类型使用专用车队。 不幸的是,这意味着卡车将无法得到充分利用,运输成本将增加。 通常,运输成本占总物流成本的65%,因此必须尽一切努力尽可能降低这一成本。 该研究旨在为运营商开发一个决策模型,以支持有关容量分配和收入管理的运营,战术和战略决策。 也就是说,给定一个固定的运输能力,承运人应该如何最佳地分配零担和包裹装载量,以最大限度地利用卡车并降低其成本。 该研究将探讨在一辆卡车上混合零担和包裹装载的可行性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Teymouri, Ahmad其他文献

Teymouri, Ahmad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
  • 批准号:
    23K11120
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards Zero Emissions Electric Aircraft through Superconducting DC Distribution Network
通过超导直流配电网络迈向零排放电动飞机
  • 批准号:
    EP/W033941/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Fellowship
Distribution Network Resilience Enhancement with Topological Neural Networks
利用拓扑神经网络增强配电网弹性
  • 批准号:
    2229417
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Feasibility of Leveraging the National PulsePoint CPR Responder Network to Facilitate Overdose Education and Naloxone Distribution
利用国家 PulsePoint CPR 应答器网络促进药物过量教育和纳洛酮分发的可行性
  • 批准号:
    10811314
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Design and Evaluation Methods for Agriculture to Food (A2F) Value Network System Based on Self-Distribution
基于自我分配的农业到食品(A2F)价值网络系统设计与评价方法
  • 批准号:
    23H01641
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
South Asian cinema and video online distribution (VOD) research network
南亚电影和视频在线发行 (VOD) 研究网络
  • 批准号:
    AH/W006464/2
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
South Asian cinema and video online distribution (VOD) research network
南亚电影和视频在线发行 (VOD) 研究网络
  • 批准号:
    AH/W006464/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
An AI Data-driven simulation framework for an electric transit system and its integration with the power distribution network
人工智能数据驱动的电动交通系统仿真框架及其与配电网络的集成
  • 批准号:
    575639-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Application of machine learning techniques to water distribution network inspections, condition assessment, and monitoring.
将机器学习技术应用于供水管网检查、状况评估和监控。
  • 批准号:
    516607-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Improving Neural Network Explainability for Time Series through in-distribution obfuscation strategies
通过分布内混淆策略提高时间序列的神经网络可解释性
  • 批准号:
    2646252
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了