An AI Data-driven simulation framework for an electric transit system and its integration with the power distribution network
人工智能数据驱动的电动交通系统仿真框架及其与配电网络的集成
基本信息
- 批准号:575639-2022
- 负责人:
- 金额:$ 3.28万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Government of Canada plans to switch public transit systems to cleaner electric power, including supporting the purchase of 5000 zero-emission buses in the next five years. Such plans will create green transportation in Canadian cities that does not emit toxic gasses which impact the environment and human health. On the other hand, Canadian municipalities and utility companies need tools that provide them with a sound analysis of the technical, economic, and environmental challenges that might affect the implementation of clean transit systems. First, the driving range of an electric bus is much shorter than the diesel counterpart, therefore, several charging stations must be carefully placed to ensure uninterrupted operation of the transit service. However, it is not trivial to decide on the number and location of these charging stations without estimating the energy consumption of an electric bus. Second, the introduction of electric buses adds an extra load to the electric distribution grid and will change the power flow in the grid; and hence, requires mechanisms to analyze the impact on the grid and recommend measures to respond to the increased load. To address the above challenges, in this research project we propose to work with Synergy North, BluWave-ai, and the City of Thunder Bay to design a state-of-art AI data-driven simulation platform that provides comprehensive decision support that eventually will accelerate the adoption of the green transit system in Thunder Bay. Concerning social benefits, the adoption of an electric transit system in Northwestern Ontario will not only reduce green gas emissions (~ 40%) but also improve local air quality and associated health benefits. Furthermore, the cost reduction (~50%) of the operation and maintenance of electric buses compared to diesel buses will benefit the City's economy. These savings can be invested back locally to drive municipal economic development and growth over time leading to the creation of more job opportunities and a fast recovery from the COVID-19 pandemic.
加拿大政府计划将公共交通系统改用更清洁的电力,包括支持在未来五年购买5000辆零排放公交车。这样的计划将在加拿大城市创造绿色交通,不会排放影响环境和人类健康的有毒气体。另一方面,加拿大市政当局和公用事业公司需要工具,为他们提供对可能影响清洁交通系统实施的技术、经济和环境挑战的合理分析。首先,电动公交车的行驶里程比柴油公交车短得多,因此,必须仔细布置几个充电站,以确保公交服务的不间断运行。然而,在不估算电动公交车能耗的情况下,决定这些充电站的数量和位置并不是一件容易的事。其次,电动公交车的引入增加了配电网的额外负荷,并将改变电网中的潮流;因此,需要有机制来分析对电网的影响并提出应对增加的负荷的措施。为了应对上述挑战,在这个研究项目中,我们建议与Synergy North、BluWave-ai和雷湾市合作,设计一个最先进的人工智能数据驱动模拟平台,提供全面的决策支持,最终将加速雷湾绿色交通系统的采用。在社会效益方面,在安大略省西北部采用电动交通系统不仅将减少绿色气体排放(~40%),还将改善当地空气质量和相关的健康效益。此外,与柴油公交车相比,电动公交车的运营和维护成本降低了约50%,这将使该市的经济受益。这些节省下来的资金可以投资回当地,随着时间的推移推动市政经济的发展和增长,从而创造更多的就业机会,并从新冠肺炎疫情中快速恢复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yassine, AbdulsalamA其他文献
Yassine, AbdulsalamA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
From data to discovery in cancer immunology: AI-driven spatial transcriptomic.
从癌症免疫学的数据到发现:人工智能驱动的空间转录组学。
- 批准号:
24K15175 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enabling net zero retrofit: using AI to generate new data driven insights and support better decision making
实现净零改造:使用人工智能生成新的数据驱动的见解并支持更好的决策
- 批准号:
10114530 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
SME Support
Equipment: MRI: Track 2 Acquisition of a HPC Cluster for Fostering Interdisciplinary Collaboration on AI-driven and Data-intensive Research and Education in West Tennessee
设备: MRI:第二轨道收购 HPC 集群,以促进田纳西州西部人工智能驱动和数据密集型研究和教育的跨学科合作
- 批准号:
2318210 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
Challenge on data driven research foundation by merging formalism and AI
形式主义与人工智能融合对数据驱动研究基础的挑战
- 批准号:
23K17520 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of data driven and AI empowered systems biology to study human diseases
数据驱动和人工智能的发展使系统生物学能够研究人类疾病
- 批准号:
10714763 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
RAPID: DRL AI: Data Driven Approaches to Integrating AI in K-12 Education Using Social Media Analysis
RAPID:DRL AI:利用社交媒体分析将 AI 集成到 K-12 教育中的数据驱动方法
- 批准号:
2332306 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
Feasibility of BIM-enabled Generative AI Platform for Data-driven Incremental Productivity Enhancement of Construction Cost Management (BIM-GAI)
支持 BIM 的生成式 AI 平台用于数据驱动的增量式生产力增强建筑成本管理 (BIM-GAI) 的可行性
- 批准号:
10079600 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Collaborative R&D
Florida Atlantic University Data-Driven Science and AI Conference
佛罗里达大西洋大学数据驱动科学与人工智能会议
- 批准号:
2207956 - 财政年份:2022
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
An AI-driven customisable software solution that makes EDI data analytics affordable and accessible for SMEs, enabling them to improve diversity
人工智能驱动的可定制软件解决方案,使中小企业能够负担得起且易于使用 EDI 数据分析,从而提高多样性
- 批准号:
10035577 - 财政年份:2022
- 资助金额:
$ 3.28万 - 项目类别:
Collaborative R&D