Geometallurgical modeling of mining complexes: testing causal hypothesis to improve plant performance
采矿综合体的地质冶金建模:测试因果假设以提高工厂性能
基本信息
- 批准号:554627-2020
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Raw materials such as metals and industrial minerals are required to sustain the current societal needs. Despite efforts towards recycling and reusing materials, the developing nations and the transition to the low-carbon economy requires new mining endeavours to satisfy the demand for metals and other strategic commodities such as rare earths elements. To make the mining industry as sustainable as possible, the extraction of raw materials must be effective and efficient. In order to achieve this, this research project proposes the development of predictive tools based on artificial intelligence, in collaboration with ArcelorMittal, a multinational steel manufacturing corporation. In particular, we propose developing causal models for each unit operation, in order to model the mining cycle as a system, that can be jointly analyzed and optimized.
Causal models are mathematical models based on graphical representations and probability that facilitate the analysis of causal relationships. A graphical representation of a process entails identifying the input factors that have an effect on a response, and finding the links between these variables. The models then use statistical analysis to compute probability of events. A plausible causal model can be proposed and tested with the data available at the mine site. If the inference model is deemed correct, counterfactuals can be analyzed, that is, the probability of an unobserved phenomenon can be calculated. Therefore, these models allow decisions and predictions accounting for the possibility of scenarios that are not observed in the available data. This possibility will benefit the industry by improving the understanding of the processes and operations, and by allowing the prediction of responses of each unit operation during the process of the material extracted from the mine, therefore building an interconnected system of operations, that can be jointly optimized to increase efficiency, reduce the use of water and energy and minimize the waste generation.
需要金属和工业矿物等原材料来维持当前的社会需求。尽管发展中国家正在努力回收和再利用材料,但发展中国家和向低碳经济转型需要新的采矿努力,以满足对金属和其他战略商品(如稀土元素)的需求。为了使采矿业尽可能地可持续发展,原材料的提取必须是有效和高效的。为了实现这一目标,该研究项目提议与跨国钢铁制造公司安赛乐米塔尔合作,开发基于人工智能的预测工具。特别是,我们建议为每个单元操作建立因果模型,以便将采矿周期建模为一个系统,可以共同分析和优化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ortiz, Julian其他文献
Ortiz, Julian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ortiz, Julian', 18)}}的其他基金
Geometallurgical modelling: algorithms for spatial prediction
地质冶金建模:空间预测算法
- 批准号:
507956-2017 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Geometallurgical modelling: algorithms for spatial prediction
地质冶金建模:空间预测算法
- 批准号:
507956-2017 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
页岩超临界CO2压裂分形破裂机理与分形离散裂隙网络研究
- 批准号:
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
- 批准号:40972154
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
ABM有效性检验的关键技术研究
- 批准号:70701001
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
三峡库区以流域为单元森林植被对洪水影响研究
- 批准号:30571486
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Defining the developmental mechanisms of pericardium formation
定义心包形成的发育机制
- 批准号:
10605059 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
- 批准号:
10722568 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Frontal-thalamo-cerebellar circuitry of attention deficit via imaging-genetic-environmental analyses
通过成像-遗传-环境分析观察注意力缺陷的额叶-丘脑-小脑回路
- 批准号:
10737357 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Enhanced Echinobase: A Community Genomics Research Resource For The Future
增强型 Echinobase:未来的社区基因组学研究资源
- 批准号:
10715578 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Cell Therapy Program with Scale-up cGMP Manufacturing of Human Corneal Stromal Stem Cells
细胞治疗计划,扩大人类角膜基质干细胞的 cGMP 生产
- 批准号:
10720562 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Evaluating the feasibility of an innovative point-of-care screening tool for detection of infant motor delay within the newborn period
评估用于检测新生儿时期婴儿运动迟缓的创新护理点筛查工具的可行性
- 批准号:
10742419 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
- 批准号:
10940417 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
SUD-t Map: A Big Data Digital Platform to Identify and Characterize SUD Treatment Opportunities to Address Health Disparities
SUD-t 地图:一个大数据数字平台,用于识别和描述 SUD 治疗机会,以解决健康差异
- 批准号:
10594828 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:














{{item.name}}会员




