Frequency Resolved Optical Switching (FROSt) for the temporal characterization of ultrafast infrared/mid-infrared lasers (Phase 1)

用于超快红外/中红外激光器时间表征的频率分辨光开关 (FROSt)(第 1 阶段)

基本信息

项目摘要

The market for ultrafast lasers was representing a value of 4.44B US$ in 2019 and is expected to reach 13.12B$ by 2024. Since the market for ultrafast lasers is growing rapidly, the need for laser diagnostics will increase accordingly. For this entire category of lasers, instruments capable to measure the pulse temporal profile are absolutely essential, whether it is to get the shortest pulse duration, or to obtain a specific desired pulse shape. Therefore, optical devices able to measure the spectra and the spectral phase of laser pulses (from which I(t) can be retrieved via a Fourier transform) will be in high demand. While many technologies are commercialized for the visible and near-IR spectral range, they are not adapted for the IR and mid-IR range. Over the recent years, INRS researchers and collaborators have developed an innovative technology to measure ultrashort pulses in the IR and mid-IR spectral range. This metrology for ultrafast laser systems is named Frequency Resolved Optical Switching (FROSt) and has already enabled to characterize ultrashort pulses from 0.8 to 10 microns central wavelength from a low repetition rate laser system. This makes this technology ideal for the complete temporal characterization of pulses derived from optical parametric amplifiers (OPA), which are becoming widely used by academic, government, and industrial researchers. However, to push this technology on the market, we need to define whether it can be used for the temporal characterization of high repetition rate laser systems such as OPAs pumped by high repetition rate Ytterbium laser systems (~100kHz). Thus, in the context of this I2I project, we will develop a prototype intended to characterize such high repetition rate tunable IR/mid-IR laser sources. For this, we previously need to investigate the fluence required for FROSt, and the maximum repetition rate at which it can operate. Furthermore, to convince potential users to adopt this metrology, we will develop a software that performs both the acquisition of the FROSt measurements as well as the reconstruction of the temporal profile of the laser pulses. Finally, we will visit interested users to validate the unique capabilities of the developed FROSt device.
超快激光器市场在2019年的价值为44.4亿美元,预计到2024年将达到131.2亿美元。由于超快激光器的市场正在快速增长,因此对激光诊断的需求也将相应增加。对于整个激光器类别,能够测量脉冲时间轮廓的仪器是绝对必要的,无论是获得最短的脉冲持续时间,还是获得特定的所需脉冲形状。因此,将高度需要能够测量激光脉冲的光谱和光谱相位的光学设备(可以经由傅立叶变换从其检索I(t))。虽然许多技术已商业化用于可见光和近红外光谱范围,但它们不适用于红外和中红外范围。 近年来,INRS的研究人员和合作者开发了一种创新技术,用于测量红外和中红外光谱范围内的超短脉冲。这种用于超快激光系统的计量被称为频率分辨光开关(FROSt),并且已经能够表征来自低重复率激光系统的0.8至10微米中心波长的超短脉冲。这使得该技术成为光学参量放大器(OPA)产生的脉冲的完整时间表征的理想选择,该技术正被学术界、政府和工业研究人员广泛使用。然而,为了将这项技术推向市场,我们需要定义它是否可以用于高重复率激光系统的时间表征,例如由高重复率镱激光系统(~ 100 kHz)泵浦的OPA。因此,在这个I2 I项目的背景下,我们将开发一个原型,旨在表征这种高重复率可调谐IR/中IR激光源。为此,我们之前需要研究FROSt所需的通量,以及它可以运行的最大重复率。此外,为了说服潜在用户采用这种计量方法,我们将开发一种软件,该软件既可以采集FROSt测量值,也可以重建激光脉冲的时间轮廓。最后,我们将访问感兴趣的用户,以验证开发的FROSt设备的独特功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Légaré, François其他文献

Towards CARS endoscopy
  • DOI:
    10.1364/oe.14.004427
  • 发表时间:
    2006-05-15
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Légaré, François;Evans, Conor L.;Xie, X. Sunney
  • 通讯作者:
    Xie, X. Sunney

Légaré, François的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Légaré, François', 18)}}的其他基金

Novel approaches for the generation and amplification of ultrashort infrared and long wavelength infrared laser sources
产生和放大超短红外和长波长红外激光源的新方法
  • 批准号:
    548666-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Alliance Grants
High-Energy Multidimensional Solitary States in Hollow Core Optical Fibers (Phase 1)
空心光纤中的高能多维孤态(第一阶段)
  • 批准号:
    567604-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Idea to Innovation
Advanced metrologies and instrumentations for the ultrafast characterization of quantum materials
用于量子材料超快表征的先进计量学和仪器
  • 批准号:
    537682-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Collaborative Research and Development Grants
Novel diagnostics for the characterization of ultrashort laser pulses
用于表征超短激光脉冲的新型诊断方法
  • 批准号:
    550317-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Alliance Grants
Advanced metrologies and instrumentations for the ultrafast characterization of quantum materials
用于量子材料超快表征的先进计量学和仪器
  • 批准号:
    537682-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Collaborative Research and Development Grants
Novel diagnostics for the characterization of ultrashort laser pulses
用于表征超短激光脉冲的新型诊断方法
  • 批准号:
    550317-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Alliance Grants
High-energy multidimensional solitary states in hollow core optical fibers (Market assessment)
空心光纤中的高能多维孤立态(市场评估)
  • 批准号:
    560506-2021
  • 财政年份:
    2020
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Idea to Innovation
Novel approaches for the generation and amplification of ultrashort infrared and long wavelength infrared laser sources
产生和放大超短红外和长波长红外激光源的新方法
  • 批准号:
    548666-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Alliance Grants
Table-top soft X-ray absorption spectroscopy based on high average/peak power femtosecond laser
基于高平均/峰值功率飞秒激光器的台式软X射线吸收光谱
  • 批准号:
    491812-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Collaborative Research and Development Grants
Femtosecond switching and reading of magnetic vortex memory devices
磁涡旋存储器件的飞秒切换和读取
  • 批准号:
    494228-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Strategic Projects - Group

相似海外基金

Measuring system for time and spatially resolved optical spectroscopy
时间和空间分辨光谱测量系统
  • 批准号:
    537598070
  • 财政年份:
    2024
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Major Research Instrumentation
Time-resolved measurements of single-shot XFEL pulses using frequency resolved optical gating
使用频率分辨光选通对单次 XFEL 脉冲进行时间分辨测量
  • 批准号:
    23K04624
  • 财政年份:
    2023
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Energy transfer at the interface of van der Waals heterostructure with time-resolved electron diffraction and optical spectroscopy
通过时间分辨电子衍射和光谱研究范德华异质结构界面的能量转移
  • 批准号:
    22KK0225
  • 财政年份:
    2023
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Characterising satellites using un-resolved optical observations
使用未解析的光学观测表征卫星
  • 批准号:
    LP210300698
  • 财政年份:
    2022
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Linkage Projects
Smart-phone-integrated, non-invasive, depth-resolved optical spectroscopy for the detection of neonatal jaundice
用于检测新生儿黄疸的智能手机集成、非侵入性、深度分辨光谱
  • 批准号:
    10677538
  • 财政年份:
    2022
  • 资助金额:
    $ 9.1万
  • 项目类别:
Advanced time-resolved optical sensing and imaging systems for biomedical and environmental applications
适用于生物医学和环境应用的先进时间分辨光学传感和成像系统
  • 批准号:
    RGPIN-2019-07127
  • 财政年份:
    2022
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Discovery Grants Program - Individual
GOALI: Advancement of Heat-Assisted Magnetic Recording Enabled by Time-Resolved Magneto-Optical Kerr Effect Metrology
GOALI:时间分辨磁光克尔效应计量技术推动热辅助磁记录的进步
  • 批准号:
    2226579
  • 财政年份:
    2022
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
Smart-phone-integrated, non-invasive, depth-resolved optical spectroscopy for the detection of neonatal jaundice
用于检测新生儿黄疸的智能手机集成、非侵入性、深度分辨光谱
  • 批准号:
    10346706
  • 财政年份:
    2022
  • 资助金额:
    $ 9.1万
  • 项目类别:
Frequency Resolved Optical Gating
频率分辨光选通
  • 批准号:
    574965-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 9.1万
  • 项目类别:
    University Undergraduate Student Research Awards
Highly time resolved observation of creation for initial optical isomer excess with ultra sensitive optical purity measurements
通过超灵敏的光学纯度测量,对初始光学异构体过量的产生进行高度时间分辨观察
  • 批准号:
    22H01281
  • 财政年份:
    2022
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了