Design and implementation of an ultra-small vital-signs-monitoring multi-sensing microsystem for COVID-19 management

用于 COVID-19 管理的超小型生命体征监测多传感微系统的设计和实现

基本信息

  • 批准号:
    560393-2020
  • 负责人:
  • 金额:
    $ 6.56万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

This collaborative research project, which counts on a multidisciplinary team, including two universities, two Canada research Chairs, and three innovative partner organizations in medical technologies and advanced manufacturing, aims to design, manufacture and test a tiny, inexpensive and easy-to-use wearable multi-sensing device to continuously monitor patients remotely, and help greatly to manage COVID-19. This device will be useful both for the follow-up of patients that tested positive as for the monitoring of patients at risk such as the elderly or immunocompromised. We envision the smallest vital signs monitoring device ever designed. This microsensor will achieve an extreme level of miniaturization by combining CMOS custom integrated circuits with ultra-small electronic components available off the shelf (COTS) through an advanced 3D-IC integration strategy that will be developed in collaboration with CMC Microsystems. The miniature multi-sensing device will address the requirements of iMD research, which strives to provide patients with inexpensive multi-sensing monitoring devices of extended battery life to continuously measure temperature, heart rate (HR), blood pressure (BP), oxygen saturation (SPO2) and respiratory rate (RR) remotely. Application-specific integrated circuits (ASICs) and ultra-small COTS will be combined and interconnected together using the advanced system-in-package chip integration that will be developed based on silicon interposers. The power consumption of the whole microsensor will be very low, within a few hundreds of microwatts, in order to extend the battery life. A custom software application will be developed in collaboration with Nexless to accurately and continuously read patients' vital signs and close the loop between the patients and various connected devices, such as Nexless's ventilators. At scale, our device will be inexpensive and provide direct and effective relief to patients, their families, and health care workers. Furthermore, the ability of Canada to reopen its economy will depend on our ability to measure and monitor the fluctuation in COVID-19 cases. Our device could be of immense help in that effort.
该合作研究项目由一个多学科团队组成,包括两所大学、两名加拿大研究主席和三个医疗技术和先进制造领域的创新合作伙伴组织,旨在设计、制造和测试一种小型、廉价且易于使用的可穿戴多传感设备,以持续远程监测患者,并极大地帮助管理COVID-19。该装置既可用于对检测呈阳性的患者进行随访,也可用于监测老年人或免疫功能低下等高危患者。我们设想有史以来最小的生命体征监测设备。该微传感器将通过与CMC Microsystems合作开发的先进3D-IC集成策略,将CMOS定制集成电路与超小型现成电子元件(COTS)相结合,实现极端的小型化水平。微型多传感设备将满足iMD研究的需求,该研究致力于为患者提供廉价的多传感监测设备,延长电池寿命,以远程连续测量温度,心率(HR),血压(BP),血氧饱和度(SPO2)和呼吸速率(RR)。专用集成电路(asic)和超小型COTS将使用基于硅中间体开发的先进系统级封装芯片集成进行组合和互连。整个微传感器的功耗将非常低,在几百微瓦以内,以延长电池寿命。该公司将与Nexless合作开发定制软件应用程序,以准确、连续地读取患者的生命体征,并关闭患者与Nexless呼吸机等各种连接设备之间的循环。在规模上,我们的设备将是廉价的,并为病人、他们的家人和卫生保健工作者提供直接和有效的救济。此外,加拿大重新开放经济的能力将取决于我们衡量和监测COVID-19病例波动的能力。我们的设备可以在这方面提供巨大的帮助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gosselin, Benoit其他文献

Wireless sEMG-Based Body-Machine Interface for Assistive Technology Devices
A Transferable Adaptive Domain Adversarial Neural Network for Virtual Reality Augmented EMG-Based Gesture Recognition
Linear-Phase Delay Filters for Ultra-Low-Power Signal Processing in Neural Recording Implants
An Ultra Low-Power CMOS Automatic Action Potential Detector
A low-power integrated neural interface with digital spike detection and extraction

Gosselin, Benoit的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gosselin, Benoit', 18)}}的其他基金

Smart Biomedical Microsystems
智能生物医学微系统
  • 批准号:
    CRC-2018-00035
  • 财政年份:
    2022
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Canada Research Chairs
Innovative biomedical microsystems driven by data and artificial intelligence
由数据和人工智能驱动的创新生物医学微系统
  • 批准号:
    RGPIN-2022-03984
  • 财政年份:
    2022
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Discovery Grants Program - Individual
Sonde télémétrique implantable de mesure de la fonction respiratoire pour la recherche préclinique en physiologie, pharmacologie et toxicologie
植入式呼吸功能测量探头,用于生理学、药理学和毒理学临床前研究
  • 批准号:
    560428-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Alliance Grants
Smart myoelectric hand prosthesis driven by embedded artificial intelligence
嵌入式人工智能驱动的智能肌电手假肢
  • 批准号:
    570710-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Alliance Grants
Étude de marché : Bande myoélectrique pour l'entraînement intelligent
前进曲 : Bande myoélectrique pour lentraènementIntelligence
  • 批准号:
    566680-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Idea to Innovation
Smart multimodal neuroscience platform for enabling untethered behavioural experiments
智能多模式神经科学平台,可实现不受束缚的行为实验
  • 批准号:
    RGPIN-2016-05909
  • 财政年份:
    2021
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Discovery Grants Program - Individual
Smart Biomedical Microsystems
智能生物医学微系统
  • 批准号:
    CRC-2018-00035
  • 财政年份:
    2021
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Canada Research Chairs
Design and implementation of an ultra-small vital-signs-monitoring multi-sensing microsystem for COVID-19 management
用于 COVID-19 管理的超小型生命体征监测多传感微系统的设计和实现
  • 批准号:
    560393-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Alliance Grants
Smart Biomedical Microsystems
智能生物医学微系统
  • 批准号:
    CRC-2018-00035
  • 财政年份:
    2020
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Canada Research Chairs
Smart multimodal neuroscience platform for enabling untethered behavioural experiments
智能多模式神经科学平台,可实现不受束缚的行为实验
  • 批准号:
    RGPIN-2016-05909
  • 财政年份:
    2020
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Development of ultra-low radioactivity zeolites for implementation to the dark matter exploration experiments and demonstration of their performance.
开发超低放射性沸石,用于实施暗物质探索实验并展示其性能。
  • 批准号:
    23K03435
  • 财政年份:
    2023
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Implementation and impact of the ban on the sale of ultra-processed foods to minors in Mexico
墨西哥向未成年人销售超加工食品禁令的实施及影响
  • 批准号:
    MR/X004171/1
  • 财政年份:
    2023
  • 资助金额:
    $ 6.56万
  • 项目类别:
    Research Grant
Hardware-Accelerated Implementation of a Neural Pathway Classifier on Ultra-low-power FPGA
在超低功耗 FPGA 上硬件加速实现神经通路分类器
  • 批准号:
    572677-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 6.56万
  • 项目类别:
    University Undergraduate Student Research Awards
Efficacy and Mechanisms of Virtual Reality Treatment of Phantom Leg Pain
虚拟现实治疗幻腿痛的疗效及机制
  • 批准号:
    10693960
  • 财政年份:
    2021
  • 资助金额:
    $ 6.56万
  • 项目类别:
Noninvasive bladder cancer diagnostics via machine learning analysis of nanoscale surface images of epithelial cells extracted from voided urine samples
通过机器学习分析从排泄尿液样本中提取的上皮细胞的纳米级表面图像进行非侵入性膀胱癌诊断
  • 批准号:
    10454232
  • 财政年份:
    2021
  • 资助金额:
    $ 6.56万
  • 项目类别:
Ultra-fast imaging for the safe delivery of electron FLASH radiation therapy
用于安全实施电子闪光放射治疗的超快速成像
  • 批准号:
    10384307
  • 财政年份:
    2021
  • 资助金额:
    $ 6.56万
  • 项目类别:
Noninvasive bladder cancer diagnostics via machine learning analysis of nanoscale surface images of epithelial cells extracted from voided urine samples
通过机器学习分析从排泄尿液样本中提取的上皮细胞的纳米级表面图像进行非侵入性膀胱癌诊断
  • 批准号:
    10669124
  • 财政年份:
    2021
  • 资助金额:
    $ 6.56万
  • 项目类别:
Ultra-fast imaging for the safe delivery of electron FLASH radiation therapy
用于安全实施电子闪光放射治疗的超快速成像
  • 批准号:
    10603353
  • 财政年份:
    2021
  • 资助金额:
    $ 6.56万
  • 项目类别:
Ultra-fast imaging for the safe delivery of electron FLASH radiation therapy
用于安全实施电子闪光放射治疗的超快速成像
  • 批准号:
    10708158
  • 财政年份:
    2021
  • 资助金额:
    $ 6.56万
  • 项目类别:
Single Cell Characterization and Procurement Core
单电池表征和采购核心
  • 批准号:
    10673652
  • 财政年份:
    2021
  • 资助金额:
    $ 6.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了