System for the generation of tunable ultrafast optical pulses (Market Study)

用于产生可调谐超快光脉冲的系统(市场研究)

基本信息

  • 批准号:
    560494-2021
  • 负责人:
  • 金额:
    $ 0.88万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Idea to Innovation
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Ultrafast laser pulses featuring wavelength tunability from the ultraviolet to the infrared range, which is beyond the direct reach of typical laser gain media, can bring a decisive advantage in many applications. However, nowadays the most commonly implemented technologies to generate such pulses, for instance optical parametric amplification, necessitate a complicated combination of multiple optical nonlinear processes for frequency conversion and amplification, essentially requiring bulky and expensive apparatus and still not automatically guaranteeing a gap-free tunability. Also, the time duration of the output pulses remains at a level comparable to the initial pumping laser system, so that further complexity needs to be added to achieve shorter durations, e.g., via pulse compression. To overcome these limitations, we have developed a simple and cost-effective system to generate wavelength-tunable and energy-scalable optical pulses, with the additional benefit of a pulse duration shorter than the one of the amplified laser employed as a pump. Our strategy is based on nonlinear spectral broadening (arising from self-phase modulation or stimulated Raman scattering) in a gas-filled hollow-core fiber (HCF), followed by a subsequent optical filtering stage. The tuning range, which can be controlled by the proper combination of gas type and pressure, can span continuously from the ultraviolet to the infrared. Once the outermost spectral lobe is selected from the broadened output spectrum by standard optical filtering, quasi-transform-limited pulses are directly obtained with energy conversion efficiencies of at least 10-15% (comparable with commercial optical parametric amplifiers) and pulse durations 3-4 times shorter than the one of the pump laser, without the need of any pulse post-compression. Considering the ease of fabrication of HCFs with different dimensions, the proposed technology could be utilized with various amplified lasers, potentially being capable of performing at extremely high (or low) average power or peak intensity conditions. This NSERC I2I Market Study will assist us in identifying the most promising applications, analyzing the potential market, and facilitating technology transfer.
超快激光脉冲具有从紫外到红外范围的波长可调谐性,这超出了典型激光增益介质的直接范围,可以在许多应用中带来决定性的优势。然而,目前最常用的产生这种脉冲的技术,例如光学参量放大,需要用于频率转换和放大的多个光学非线性过程的复杂组合,基本上需要庞大且昂贵的设备,并且仍然不能自动保证无间隙可调谐性。而且,输出脉冲的持续时间保持在与初始泵浦激光系统相当的水平,使得需要增加进一步的复杂性以实现更短的持续时间,例如,通过脉冲压缩为了克服这些限制,我们已经开发了一种简单且具有成本效益的系统来产生波长可调谐和能量可缩放的光脉冲,其额外的好处是脉冲持续时间短于用作泵浦的放大激光器的脉冲持续时间。我们的策略是基于非线性光谱展宽(由自相位调制或受激拉曼散射)在充气空芯光纤(HCF),随后由随后的光学过滤阶段。调谐范围可以通过气体类型和压力的适当组合来控制,可以从紫外到红外连续跨越。一旦通过标准光学滤波从加宽的输出光谱中选择最外光谱瓣,就直接获得准变换限制脉冲,其能量转换效率至少为10-15%(与商业光学参量放大器相当),并且脉冲持续时间比泵浦激光器的脉冲持续时间短3-4倍,而不需要任何脉冲后压缩。考虑到制造具有不同尺寸的HCF的容易性,所提出的技术可以与各种放大激光器一起使用,潜在地能够在极高(或低)平均功率或峰值强度条件下执行。这项NSERC I2 I市场研究将帮助我们确定最有前途的应用,分析潜在的市场,并促进技术转让。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Razzari, Luca其他文献

Extremely broadband terahertz generation via pulse compression of an Ytterbium laser amplifier
  • DOI:
    10.1364/oe.27.032659
  • 发表时间:
    2019-10-28
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Piccoli, Riccardo;Rovere, Andrea;Razzari, Luca
  • 通讯作者:
    Razzari, Luca
Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas
  • DOI:
    10.1364/oe.19.026088
  • 发表时间:
    2011-12-19
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Razzari, Luca;Toma, Andrea;Di Fabrizio, Enzo
  • 通讯作者:
    Di Fabrizio, Enzo
Improving nanoscale terahertz field localization by means of sharply tapered resonant nanoantennas
  • DOI:
    10.1515/nanoph-2019-0459
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Aglieri, Vincenzo;Jin, Xin;Razzari, Luca
  • 通讯作者:
    Razzari, Luca
Squeezing Terahertz Light into Nanovolumes: Nanoantenna Enhanced Terahertz Spectroscopy (NETS) of Semiconductor Quantum Dots
  • DOI:
    10.1021/nl503705w
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Toma, Andrea;Tuccio, Salvatore;Razzari, Luca
  • 通讯作者:
    Razzari, Luca
Terahertz Dipole Nanoantenna Arrays: Resonance Characteristics.
  • DOI:
    10.1007/s11468-012-9439-0
  • 发表时间:
    2013-03
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Razzari, Luca;Toma, Andrea;Clerici, Matteo;Shalaby, Mostafa;Das, Gobind;Liberale, Carlo;Chirumamilla, Manohar;Zaccaria, Remo Proietti;De Angelis, Francesco;Peccianti, Marco;Morandotti, Roberto;Di Fabrizio, Enzo
  • 通讯作者:
    Di Fabrizio, Enzo

Razzari, Luca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Razzari, Luca', 18)}}的其他基金

Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices
抑制太赫兹真空波动以实现新一代纳米器件
  • 批准号:
    RGPIN-2019-06138
  • 财政年份:
    2022
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Discovery Grants Program - Individual
Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices
抑制太赫兹真空波动以实现新一代纳米器件
  • 批准号:
    RGPIN-2019-06138
  • 财政年份:
    2021
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Discovery Grants Program - Individual
Intense visible white-light pulse generation in gas-filled hollow-core fibers pumped by Yb-lasers for multi-color time-resolved spectroscopy
由 Yb 激光器泵浦的充气空心光纤中产生强烈的可见白光脉冲,用于多色时间分辨光谱
  • 批准号:
    569169-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Alliance Grants
Hollow core fiber compression scheme for high-average/peak-power ytterbium laser technology and its application to secondary sources of long-wavelength radiation
高平均/峰值功率镱激光技术的空心光纤压缩方案及其在长波长辐射二次源中的应用
  • 批准号:
    529329-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Collaborative Research and Development Grants
Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices
抑制太赫兹真空波动以实现新一代纳米器件
  • 批准号:
    RGPIN-2019-06138
  • 财政年份:
    2020
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Discovery Grants Program - Individual
Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices
抑制太赫兹真空波动以实现新一代纳米器件
  • 批准号:
    RGPIN-2019-06138
  • 财政年份:
    2019
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Discovery Grants Program - Individual
Hollow core fiber compression scheme for high-average/peak-power ytterbium laser technology and its application to secondary sources of long-wavelength radiation
高平均/峰值功率镱激光技术的空心光纤压缩方案及其在长波长辐射二次源中的应用
  • 批准号:
    529329-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a Novel Charge Accumulation THz Spectroscopy System Operating in an Inert Atmosphere
开发在惰性气氛中运行的新型电荷积累太赫兹光谱系统
  • 批准号:
    RTI-2020-00741
  • 财政年份:
    2019
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Research Tools and Instruments
Plasmonic metasurfaces for high-dimensional quantum information processing
用于高维量子信息处理的等离子体超表面
  • 批准号:
    506518-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Strategic Projects - Group
Nanostructures for Assisted Spectroscopy and Nonlinear Optics
用于辅助光谱学和非线性光学的纳米结构
  • 批准号:
    435948-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
  • 批准号:
    82371660
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
  • 批准号:
    30470495
  • 批准年份:
    2004
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Next-generation reaction-environments tunable catalysts for CO2 reduction
用于二氧化碳减排的下一代反应环境可调催化剂
  • 批准号:
    FT230100059
  • 财政年份:
    2023
  • 资助金额:
    $ 0.88万
  • 项目类别:
    ARC Future Fellowships
System for the Generation of Tunable Ultrafast Optical Pulses (Phase I)
可调谐超快光脉冲生成系统(第一阶段)
  • 批准号:
    571993-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Idea to Innovation
Machine-Learning-Driven Synthesis of the Next Generation Carbon Dots with Tunable Fluorescence/Band-Gap
机器学习驱动的具有可调荧光/带隙的下一代碳点合成
  • 批准号:
    2754236
  • 财政年份:
    2022
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Studentship
Swept source retinal visible optical coherence tomography using broadly tunable frequency doubling of NIR MEMS-VCSELs
使用近红外 MEMS-VCSEL 的宽可调倍频进行扫描源视网膜可见光学相干断层扫描
  • 批准号:
    10546927
  • 财政年份:
    2022
  • 资助金额:
    $ 0.88万
  • 项目类别:
Tunable, narrow molecular weight distribution DNA for nanopore sequencing
用于纳米孔测序的可调窄分子量分布 DNA
  • 批准号:
    10175515
  • 财政年份:
    2021
  • 资助金额:
    $ 0.88万
  • 项目类别:
Tunable, narrow molecular weight distribution DNA for nanopore sequencing
用于纳米孔测序的可调窄分子量分布 DNA
  • 批准号:
    10412055
  • 财政年份:
    2021
  • 资助金额:
    $ 0.88万
  • 项目类别:
CAREER: Engineering Tunable Fluorescent Organic Salts for Next Generation Imaging and Photodynamic Therapy
职业:为下一代成像和光动力治疗设计可调谐荧光有机盐
  • 批准号:
    1845006
  • 财政年份:
    2019
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Standard Grant
MAP: a Flowable, Precision-Engineered, and Tunable Tissue Scaffold Leveraging Hyper-Porous Geometry to Control Inflammation and Promote Regenerative Healing in Diabetic Wounds
MAP:一种可流动、精密设计且可调节的组织支架,利用超多孔几何形状来控制炎症并促进糖尿病伤口的再生愈合
  • 批准号:
    9909864
  • 财政年份:
    2019
  • 资助金额:
    $ 0.88万
  • 项目类别:
Laser-free Ultrafast Tunable Stroboscopic TEM imaging for Biomedical Applications
适用于生物医学应用的无激光超快可调谐频闪 TEM 成像
  • 批准号:
    10082035
  • 财政年份:
    2019
  • 资助金额:
    $ 0.88万
  • 项目类别:
MAP: a Flowable, Precision-Engineered, and Tunable Tissue Scaffold Leveraging Hyper-Porous Geometry to Control Inflammation and Promote Regenerative Healing in Diabetic Wounds
MAP:一种可流动、精密设计且可调节的组织支架,利用超多孔几何形状来控制炎症并促进糖尿病伤口的再生愈合
  • 批准号:
    10015273
  • 财政年份:
    2019
  • 资助金额:
    $ 0.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了