Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices

抑制太赫兹真空波动以实现新一代纳米器件

基本信息

  • 批准号:
    RGPIN-2019-06138
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Low-dimensional materials represent an extremely appealing solution to overcome the current limits of traditional electronic scaling, as they promise to bring miniaturization down to the level of single atomic layers. This would impact a wide range of opto- and nano-electronic technologies, at the core of a variety of devices (such as personal computers, as well as smart phones, tablets and TVs) that assist us in many aspects of our daily life. A drastic boost in the performance and energy efficiency of these new material platforms is now needed to definitively push their practical implementation. The research program described in this proposal will focus on improving the optical/electrical performance of low-dimensional systems through a completely novel approach, by acting on the very mechanism (phonon scattering phonons being quanta of lattice vibrations) that is typically responsible for energy dissipation in solids. Unlike current efforts targeting more straightforward but often marginal material optimizations, we will engineer the electromagnetic environment where the materials operate. Indeed, we have recently demonstrated that the intrinsic phonon response of nanomaterials can be modified using properly tailored terahertz nanoplasmonic resonators. This can be achieved without the need of any direct terahertz illumination, by solely exploiting the high “vacuum” electric field associated with terahertz “quantum vacuum fluctuations” in such resonators. The proposed research will address the design and realization of novel nanophotonic architectures for the selective manipulation of the optical phonon response of reduced-dimensionality materials. Devices to be pursued in the mid- to long-term will include advanced LEDs and nanoelectronic circuits, as well as on chip' terahertz sensor and terahertz data communication systems. In the short-term, activities will be conducted around four inter-related research tracks, exploiting phonon resonance reshaping to develop: (i) miniaturized sources of terahertz radiation that do not require complex optical pumping stations to operate; (ii) schemes for enhancing terahertz nonlinearities at the nanoscale; plasmonic nano-architectures for boosting (iii) optical light emission and (iv) charge transport in two-dimensional materials. The program will ultimately provide general, well-founded guidelines on when and how terahertz vacuum fluctuation design solutions can offer a competitive advantage in obtaining high-performing systems. It can thus pave the way for the development of new advanced technologies, consistently with the immediate needs of the Canadian photonics industry, while also promoting the training of highly qualified personnel, to respond to the scientific and technological challenges of our modern society.
低维材料是一种非常有吸引力的解决方案,可以克服目前传统电子缩放的限制,因为它们有望将小型化降低到单原子层的水平。这将影响广泛的光电子和纳米电子技术,这些技术是各种设备(如个人电脑,以及智能手机、平板电脑和电视)的核心,在我们日常生活的许多方面帮助我们。现在需要大幅提高这些新材料平台的性能和能源效率,才能最终推动它们的实际实施。 这项建议中描述的研究计划将专注于通过一种全新的方法来改善低维系统的光学/电学性能,方法是作用于通常导致固体中能量耗散的机制(声子散射声子是晶格振动的量子)。与目前的努力不同,我们的目标是更直接但往往是边缘的材料优化,我们将设计材料运行的电磁环境。事实上,我们最近已经证明,使用适当定制的太赫兹纳米等离子体谐振器可以改变纳米材料的本征声子响应。这可以在不需要任何直接太赫兹照明的情况下实现,只需利用这种谐振器中与太赫兹“量子真空涨落”相关的高“真空”电场。这项研究将致力于设计和实现用于选择性操纵降维材料光学声子响应的新型纳米光子结构。中长期将追求的设备将包括先进的LED和纳米电子电路,以及芯片上的太赫兹传感器和太赫兹数据通信系统。在短期内,将围绕四个相互关联的研究轨道开展活动,利用声子共振重塑来开发:(1)不需要复杂的光学泵站即可运行的微型太赫兹辐射源;(2)在纳米尺度上增强太赫兹非线性的计划;(3)等离子体纳米结构,以增强(3)光学发射和(4)二维材料中的电荷传输。 该计划最终将提供关于太赫兹真空波动设计解决方案何时以及如何在获得高性能系统方面提供竞争优势的一般性、有根据的指导方针。因此,它可以为新的先进技术的发展铺平道路,符合加拿大光子业的迫切需要,同时还可以促进高素质人员的培训,以应对我们现代社会的科学和技术挑战。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Razzari, Luca其他文献

Extremely broadband terahertz generation via pulse compression of an Ytterbium laser amplifier
  • DOI:
    10.1364/oe.27.032659
  • 发表时间:
    2019-10-28
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Piccoli, Riccardo;Rovere, Andrea;Razzari, Luca
  • 通讯作者:
    Razzari, Luca
Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas
  • DOI:
    10.1364/oe.19.026088
  • 发表时间:
    2011-12-19
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Razzari, Luca;Toma, Andrea;Di Fabrizio, Enzo
  • 通讯作者:
    Di Fabrizio, Enzo
Improving nanoscale terahertz field localization by means of sharply tapered resonant nanoantennas
  • DOI:
    10.1515/nanoph-2019-0459
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Aglieri, Vincenzo;Jin, Xin;Razzari, Luca
  • 通讯作者:
    Razzari, Luca
Squeezing Terahertz Light into Nanovolumes: Nanoantenna Enhanced Terahertz Spectroscopy (NETS) of Semiconductor Quantum Dots
  • DOI:
    10.1021/nl503705w
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Toma, Andrea;Tuccio, Salvatore;Razzari, Luca
  • 通讯作者:
    Razzari, Luca
Terahertz Dipole Nanoantenna Arrays: Resonance Characteristics.
  • DOI:
    10.1007/s11468-012-9439-0
  • 发表时间:
    2013-03
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Razzari, Luca;Toma, Andrea;Clerici, Matteo;Shalaby, Mostafa;Das, Gobind;Liberale, Carlo;Chirumamilla, Manohar;Zaccaria, Remo Proietti;De Angelis, Francesco;Peccianti, Marco;Morandotti, Roberto;Di Fabrizio, Enzo
  • 通讯作者:
    Di Fabrizio, Enzo

Razzari, Luca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Razzari, Luca', 18)}}的其他基金

Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices
抑制太赫兹真空波动以实现新一代纳米器件
  • 批准号:
    RGPIN-2019-06138
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices
抑制太赫兹真空波动以实现新一代纳米器件
  • 批准号:
    RGPIN-2019-06138
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Intense visible white-light pulse generation in gas-filled hollow-core fibers pumped by Yb-lasers for multi-color time-resolved spectroscopy
由 Yb 激光器泵浦的充气空心光纤中产生强烈的可见白光脉冲,用于多色时间分辨光谱
  • 批准号:
    569169-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Alliance Grants
Hollow core fiber compression scheme for high-average/peak-power ytterbium laser technology and its application to secondary sources of long-wavelength radiation
高平均/峰值功率镱激光技术的空心光纤压缩方案及其在长波长辐射二次源中的应用
  • 批准号:
    529329-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Collaborative Research and Development Grants
System for the generation of tunable ultrafast optical pulses (Market Study)
用于产生可调谐超快光脉冲的系统(市场研究)
  • 批准号:
    560494-2021
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Idea to Innovation
Taming Terahertz Vacuum Fluctuations for a Novel Generation of Nanodevices
抑制太赫兹真空波动以实现新一代纳米器件
  • 批准号:
    RGPIN-2019-06138
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Hollow core fiber compression scheme for high-average/peak-power ytterbium laser technology and its application to secondary sources of long-wavelength radiation
高平均/峰值功率镱激光技术的空心光纤压缩方案及其在长波长辐射二次源中的应用
  • 批准号:
    529329-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a Novel Charge Accumulation THz Spectroscopy System Operating in an Inert Atmosphere
开发在惰性气氛中运行的新型电荷积累太赫兹光谱系统
  • 批准号:
    RTI-2020-00741
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Research Tools and Instruments
Plasmonic metasurfaces for high-dimensional quantum information processing
用于高维量子信息处理的等离子体超表面
  • 批准号:
    506518-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Strategic Projects - Group
Nanostructures for Assisted Spectroscopy and Nonlinear Optics
用于辅助光谱学和非线性光学的纳米结构
  • 批准号:
    435948-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

量子限制杂质原子作为单电子量子点对Terahertz远红外发光器的应用
  • 批准号:
    60776044
  • 批准年份:
    2007
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Terahertz Imaging for Side-Channel Attacks
用于侧信道攻击的太赫兹成像
  • 批准号:
    NI230100072
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    National Intelligence and Security Discovery Research Grants
Terahertz-frequency sensors for atmospheric chemistry and space research (renewal)
用于大气化学和空间研究的太赫兹频率传感器(更新)
  • 批准号:
    MR/Y011775/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Fellowship
Next Generation Terahertz Materials
下一代太赫兹材料
  • 批准号:
    DP240103404
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Projects
Spatial light modulator by MEMS reconfigurable metamaterial for Terahertz wave
太赫兹波MEMS可重构超材料空间光调制器
  • 批准号:
    23K20256
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
AuNPs and DNA Aptamer-Driven Terahertz Sensor for Highly Sensitive Detection of Small Molecules
AuNP 和 DNA 适配体驱动的太赫兹传感器,用于小分子的高灵敏度检测
  • 批准号:
    24K07524
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
6G Terahertz Communications for Future Heterogeneous Wireless Network
面向未来异构无线网络的 6G 太赫兹通信
  • 批准号:
    EP/Y035135/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Research Grant
Leaky Dielectric Platform for Integrated Terahertz Components
用于集成太赫兹组件的漏电介质平台
  • 批准号:
    DP240100162
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Projects
Resonant tunneling diode Terahertz oscillator with superlattice heterostructure for high output power
具有超晶格异质结构的谐振隧道二极管太赫兹振荡器,可实现高输出功率
  • 批准号:
    24K17329
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
PFI-TT: Scale up of new materials that generate terahertz-frequency light for advanced scanning applications
PFI-TT:扩大产生太赫兹频率光的新材料的规模,用于高级扫描应用
  • 批准号:
    2345726
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Development of GaN quantum cascade laser to cover the unexplored terahertz wave frequencies
开发GaN量子级联激光器以覆盖未探索的太赫兹波频率
  • 批准号:
    24K00953
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了