Artificial intelligence for leak monitoring in water distribution networks
用于供水管网泄漏监测的人工智能
基本信息
- 批准号:560711-2020
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nearly 25-30% of drinking water is estimated to be lost between treatment and delivery. This is not only a loss of revenue and wasted energy from storage to delivery, but also a loss of valuable resource when nearly 1 in 10 people on our planet lack access to clean drinking water. Conventional leak detection technologies rely on inspection methods which involve cumbersome processes and expert interpretation of data to determine the presence of leaks and their location. Our industrial partner has invested in a patented monitoring system which can be installed on fire hydrants to detect and locate leaks, year-round even in cold climates. However, the decision-support tools are basic and have significant room for advancement using artificial intelligence (AI) and latest developments in communication technologies, including 5G. This project aims to bring latest developments in AI to bear on the problem of leak detection and localization in water distribution systems. Most importantly, through this partnership, new algorithms and processes which have been developed and validated by the academic team in controlled laboratory and field environments will be further developed and translated to real-world complex operational environments. It is anticipated that such advancements will increase detection rates and robustness, while also reducing or eliminating the need for expert user intervention. Through this collaboration, trainees will also gain skills in machine learning and signal processing which are in high demand in Canada and worldwide.
据估计,在治疗和分娩之间,约有25-30%的饮用水流失。这不仅是从储存到交付的收入损失和能源浪费,而且是宝贵资源的损失,因为地球上近十分之一的人无法获得清洁饮用水。传统的泄漏检测技术依赖于检查方法,这些方法涉及繁琐的过程和专家对数据的解释,以确定泄漏的存在及其位置。我们的工业合作伙伴投资了一种专利监控系统,该系统可以安装在消防栓上,即使在寒冷的气候中也可以全年检测和定位泄漏。然而,决策支持工具是基本的,并且使用人工智能(AI)和通信技术(包括5G)的最新发展有很大的进步空间。该项目旨在将人工智能的最新发展应用于供水系统的泄漏检测和定位问题。最重要的是,通过这种伙伴关系,学术团队在受控实验室和现场环境中开发和验证的新算法和流程将进一步开发并转化为现实世界的复杂操作环境。预计这些进步将提高检测率和鲁棒性,同时还减少或消除对专家用户干预的需求。通过这种合作,学员还将获得机器学习和信号处理方面的技能,这些技能在加拿大和世界各地都有很高的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cascante, Giovanni其他文献
Novel evaluation of bender element transmitter response in transparent soil
- DOI:
10.1680/jgeot.17.p.256 - 发表时间:
2020-03-01 - 期刊:
- 影响因子:5.8
- 作者:
Irfan, Muhammad;Cascante, Giovanni;Khan, Zahid - 通讯作者:
Khan, Zahid
Experimental and numerical study of soil-reinforcement effects on the low-strain stiffness and bearing capacity of shallow foundations
- DOI:
10.1007/s10706-006-9109-0 - 发表时间:
2007-06-01 - 期刊:
- 影响因子:1.7
- 作者:
Chung, Wilson;Cascante, Giovanni - 通讯作者:
Cascante, Giovanni
Cascante, Giovanni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cascante, Giovanni', 18)}}的其他基金
RELIABLE NONDESTRUCTIVE EVALUATION OF DAMAGE IN INFRASTRUCTURE AND SOIL DYNAMIC CHARACTERIZATION USING NOVEL LASER TECHNOLOGY
使用新型激光技术对基础设施损坏和土壤动态特性进行可靠的非破坏性评估
- 批准号:
RGPIN-2017-05059 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Localization of Leaks in Water Distribution Networks
供水管网泄漏的定位
- 批准号:
570407-2021 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Alliance Grants
RELIABLE NONDESTRUCTIVE EVALUATION OF DAMAGE IN INFRASTRUCTURE AND SOIL DYNAMIC CHARACTERIZATION USING NOVEL LASER TECHNOLOGY
使用新型激光技术对基础设施损坏和土壤动态特性进行可靠的非破坏性评估
- 批准号:
RGPIN-2017-05059 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
RELIABLE NONDESTRUCTIVE EVALUATION OF DAMAGE IN INFRASTRUCTURE AND SOIL DYNAMIC CHARACTERIZATION USING NOVEL LASER TECHNOLOGY
使用新型激光技术对基础设施损坏和土壤动态特性进行可靠的非破坏性评估
- 批准号:
RGPIN-2017-05059 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
RELIABLE NONDESTRUCTIVE EVALUATION OF DAMAGE IN INFRASTRUCTURE AND SOIL DYNAMIC CHARACTERIZATION USING NOVEL LASER TECHNOLOGY
使用新型激光技术对基础设施损坏和土壤动态特性进行可靠的非破坏性评估
- 批准号:
507951-2017 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
RELIABLE NONDESTRUCTIVE EVALUATION OF DAMAGE IN INFRASTRUCTURE AND SOIL DYNAMIC CHARACTERIZATION USING NOVEL LASER TECHNOLOGY
使用新型激光技术对基础设施损坏和土壤动态特性进行可靠的非破坏性评估
- 批准号:
507951-2017 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Ultrasonic assessment of Young's modulus in cast iron pipes
铸铁管杨氏模量的超声评估
- 批准号:
522467-2018 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Engage Grants Program
RELIABLE NONDESTRUCTIVE EVALUATION OF DAMAGE IN INFRASTRUCTURE AND SOIL DYNAMIC CHARACTERIZATION USING NOVEL LASER TECHNOLOGY
使用新型激光技术对基础设施损坏和土壤动态特性进行可靠的非破坏性评估
- 批准号:
RGPIN-2017-05059 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
RELIABLE NONDESTRUCTIVE EVALUATION OF DAMAGE IN INFRASTRUCTURE AND SOIL DYNAMIC CHARACTERIZATION USING NOVEL LASER TECHNOLOGY
使用新型激光技术对基础设施损坏和土壤动态特性进行可靠的非破坏性评估
- 批准号:
507951-2017 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
RELIABLE NONDESTRUCTIVE EVALUATION OF DAMAGE IN INFRASTRUCTURE AND SOIL DYNAMIC CHARACTERIZATION USING NOVEL LASER TECHNOLOGY
使用新型激光技术对基础设施损坏和土壤动态特性进行可靠的非破坏性评估
- 批准号:
RGPIN-2017-05059 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
跨文化团队中团队协调机制和团队效能的研究:文化智力的视角
- 批准号:71072055
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
基于混沌动力学与复杂网络的群智能优化研究
- 批准号:60673098
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
智力超常儿童的基因分型的初步研究
- 批准号:30670716
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
EU-Funded
University of West London and Turing Intelligence Technology Limited KTP (23-24 R3)
西伦敦大学与图灵智能科技有限公司KTP (23-24 R3)
- 批准号:
10082602 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Knowledge Transfer Network
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Projects
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
- 批准号:
DP240100506 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Projects
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
- 批准号:
EP/Y028872/1 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Research Grant
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Fellowship
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Continuing Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant














{{item.name}}会员




