Renewable Flex DC Building-Scale Energy Systems

可再生 Flex 直流建筑规模能源系统

基本信息

  • 批准号:
    RGPIN-2015-04500
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Unprecedented expansion of native direct current (DC) powered equipment (computers, telecoms, data centers, consumer electronics) has increased global electricity consumption by 27% over the past decade. In US/Canada, over 800 TWh of DC energy is consumed every year, producing an associated 550 tons of harmful carbon emissions. DC electricity usage is projected to increase even further with the addition of 20 million DC-powered electric vehicles (EV) by 2020, putting a significant burden on a century-old power infrastructure. Since power utilities deliver alternating current (AC) rather than DC, the conversion process used to supply the existing and forthcoming DC loads is very inefficient. This program addresses flexible DC loading/generation within buildings by using a novel building-scale energy architecture. The short-term objective is to enable DC infrastructure within buildings to incorporate DC renewable generation and storage technologies (e.g. PV solar, batteries, and fuel cells) and to supply the increasing amount of DC powered equipment directly (phasing out AC). The innovative features of this program reside in the significant efficiency gain and the cost reduction opportunity provided by the novel power conversion architecture and topologies. The elimination of conversion stages (DC/AC and AC/DC) at the generation and load anticipates a reduction in emission and the maximization building efficiency. Advances in this area will enhance the storage and delivery of power to both consumers and utility providers. From the end user perspective, the building's power architecture will accommodate maximum DC power extraction (solar, batteries, fuel cells, etc.) and the next generation of high efficiency DC powering for lightning (LED), EV chargers, HVAC/cooling (variable speed), etc. From the utility perspective, the building-scale energy system will have a perfect energy consumer profile. It will provide a predictable/reliable single-point bidirectional interface, with reactive power injection, harmonic cancellation, and storage for peak shaving/backup. These features will produce remarkable benefits for the power utility. The long-term objective is to target R&D and final implementation of a flexible, modular power converters that concentrates on definitive technical challenges associated with topological flexibility, scalability, power sharing, and control for coordinated operation for DC infrastructure. Additional objectives are to provide HQP training in renewable power and develop IP for Canadian industries. Anticipating the high demand for engineers in renewable power, the program will deliver graduates with strong R&D skills for Canada. The research program fits into the government's strategy on science and technology by helping to accelerate the deployment of renewable power and meets NSERC's objectives by bringing originality and innovation.
过去十年,本地直流 (DC) 供电设备(计算机、电信、数据中心、消费电子产品)空前扩张,导致全球电力消耗增加了 27%。在美国/加拿大,每年消耗超过 800 太瓦时的直流能源,产生相关的 550 吨有害碳排放。到 2020 年,随着直流电动汽车 (EV) 数量的增加,直流用电量预计将进一步增加,这会给已有百年历史的电力基础设施带来沉重负担。 由于电力公司提供交流电 (AC) 而不是直流电,因此用于为现有和即将到来的直流负载供电的转换过程效率非常低。该计划通过使用新颖的建筑规模能源架构来解决建筑物内灵活的直流负载/发电问题。短期目标是使建筑物内的直流基础设施能够纳入直流可再生发电和存储技术(例如光伏太阳能、电池和燃料电池),并直接为越来越多的直流供电设备供电(逐步淘汰交流电)。该计划的创新特点在于新颖的电源转换架构和拓扑提供了显着的效率增益和成本降低机会。消除发电和负载处的转换级(直流/交流和交流/直流)预计会减少排放并最大限度地提高建筑效率。 该领域的进步将增强向消费者和公用事业提供商提供电力的存储和输送。从最终用户的角度来看,建筑物的电源架构将容纳最大的直流电源提取(太阳能、电池、燃料电池等)以及用于闪电(LED)、电动汽车充电器、HVAC/冷却(变速)等的下一代高效直流电源。从公用事业的角度来看,建筑物规模的能源系统将拥有完美的能源消费者概况。它将提供可预测/可靠的单点双向接口,具有无功功率注入、谐波消除和调峰/备份存储功能。这些功能将为电力公司带来显着的效益。 长期目标是研发和最终实施灵活的模块化电源转换器,专注于解决与拓扑灵活性、可扩展性、功率共享和直流基础设施协调运行控制相关的明确技术挑战。其他目标是提供可再生能源方面的总部培训并为加拿大工业开发知识产权。预计可再生能源领域对工程师的需求量很大,该计划将为加拿大培养具有强大研发技能的毕业生。该研究项目有助于加速可再生能源的部署,符合政府的科技战略,并通过原创性和创新实现 NSERC 的目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ordonez, Martin其他文献

Planar Transformers With Near-Zero Common-Mode Noise for Flyback and Forward Converters
  • DOI:
    10.1109/tpel.2017.2679717
  • 发表时间:
    2018-02-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Saket, Mohammad Ali;Ordonez, Martin;Shafiei, Navid
  • 通讯作者:
    Shafiei, Navid
Wireless-Power-Transfer Planar Spiral Winding Design Applying Track Width Ratio
Dual-Loop Controller for LLC Resonant Converters Using an Average Equivalent Model
  • DOI:
    10.1109/tpel.2017.2786044
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Degioanni, Franco;Zurbriggen, Ignacio Galiano;Ordonez, Martin
  • 通讯作者:
    Ordonez, Martin
MOSFET Power Loss Estimation in LLC Resonant Converters: Time Interval Analysis
  • DOI:
    10.1109/tpel.2019.2909903
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Glitz, Ettore Scabeni;Ordonez, Martin
  • 通讯作者:
    Ordonez, Martin
Inrush Current Limit or Extreme Startup Response for LLC Converters Using Average Geometric Control
  • DOI:
    10.1109/tpel.2017.2666803
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Mohammadi, Mehdi;Ordonez, Martin
  • 通讯作者:
    Ordonez, Martin

Ordonez, Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ordonez, Martin', 18)}}的其他基金

Power Converters for Renewable Energy Systems
用于可再生能源系统的电源转换器
  • 批准号:
    CRC-2017-00227
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Canada Research Chairs
Flexible Power for Future Zero-Emissions Shipping and Delivery
未来零排放运输和交付的灵活动力
  • 批准号:
    RGPIN-2021-03840
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid battery charging technologies for light electric vehicles
轻型电动汽车电池快速充电技术
  • 批准号:
    538421-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative Research and Development Grants
Flexible Power for Future Zero-Emissions Shipping and Delivery
未来零排放运输和交付的灵活动力
  • 批准号:
    RGPIN-2021-03840
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Power Converters For Renewable Energy Systems
用于可再生能源系统的电源转换器
  • 批准号:
    CRC-2017-00227
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Canada Research Chairs
Advanced Battery Storage Conversion Systems
先进的电池存储转换系统
  • 批准号:
    556851-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Alliance Grants
Rapid battery charging technologies for light electric vehicles
轻型电动汽车电池快速充电技术
  • 批准号:
    538421-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative Research and Development Grants
Advanced Battery Storage Conversion Systems
先进的电池存储转换系统
  • 批准号:
    556851-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Alliance Grants
Power Converters for Renewable Energy Systems
用于可再生能源系统的电源转换器
  • 批准号:
    CRC-2017-00227
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Canada Research Chairs
High efficiency power conversion for DC buildings, telecom and IT infrastructure
适用于直流建筑、电信和 IT 基础设施的高效电力转换
  • 批准号:
    492378-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

发展非平衡多轨道FLEX+DMFT理论方法研究低维强关联电子系统
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Vac-Flex Recycling Pack
Vac-Flex 回收包
  • 批准号:
    10075879
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative R&D
BI tims TOF fleX with MALDI-2 mass spectrometer
BI tims TOF flex 与 MALDI-2 质谱仪
  • 批准号:
    10630721
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Treekind(R) by Biophilica - Analysing Flex Performance of Textile-backed Samples Relative to Tensile Strength and Compression
Biophilica 的 Treekind(R) - 分析织物背衬样品相对于拉伸强度和压缩的弯曲性能
  • 批准号:
    10074779
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative R&D
Flexibly Scalable Energy Efficient Networking (FLEX-SCALE)
灵活可扩展的节能网络 (FLEX-SCALE)
  • 批准号:
    10061981
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    EU-Funded
Treekind(R), a unique PU-free leather alternative: Material analysis to produce consistent flex performance for the footwear industry
Treekind(R),一种独特的不含 PU 的皮革替代品:材料分析可为制鞋行业提供一致的弯曲性能
  • 批准号:
    10022668
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative R&D
V2X-Flex: Unlocking the energy flexibility potential of domestic bi-directional EV charging technology
V2X-Flex:释放国内双向电动汽车充电技术的能源灵活性潜力
  • 批准号:
    10035588
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    BEIS-Funded Programmes
Transitioning to hydrogen based power generation through a novel, fuel-flex, gas turbine injector concept
通过新颖的燃料弹性燃气轮机喷射器概念过渡到氢基发电
  • 批准号:
    570548-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Alliance Grants
Ino-Flex: Enabling ultra-large area ultra-parallel roll-to-roll transfer printing of high performance flexible inorganic semiconductor devices
Ino-Flex:实现高性能柔性无机半导体器件的超大面积超并行卷对卷转印
  • 批准号:
    EP/V051792/1
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了