Correlation and Entanglement in Quantum Systems
量子系统中的相关性和纠缠
基本信息
- 批准号:RGPIN-2016-03763
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My proposed research is the theory of correlation and entanglement in quantum systems, and the role correlation and entanglement play in quantum information processing and many-body physics.
Entanglement, the quantum correlation beyond any possible classical correlation, plays the key role in the study of quantum information theory and many-body physics. After decades of effort, our understanding of quantum entanglement remains limited. The major difficulty lies in the fact that the dimension of the Hilbert space grows exponentially with the number of particles in the system. That is, a many-body quantum state needs to be described by exponentially many complex parameters.
It is essential to retrieve' from those parameters the most important quantities that capture the physical, or information-theoretic meanings of the systems, which could be of either fundamental or practical relevance. The ultimate goal I want to achieve via the proposed research is to develop a consistent and unifying theory for correlation and entanglement in quantum systems, from the information-theoretic viewpoints, and understand how they make quantum information processing different from its classical counterparts at the fundamental level.
In order to achieve this long-time goal, my short-time objectives include the following: understand the information-theoretic (i.e. operational) meanings for entanglement in identical particle systems (bosons and fermions); develop methods and conditions to study the quantum marginal problem with overlapping marginals; understand the correlation hierarchy (i.e. true' many-body correlation/entanglement) and its connection to the concept of topological entanglement entropy; study the geometry of reduced density matrices; and understand the structure of quantum error-correcting codes under a more general setting, based on different Hadamard matrices.
The proposed research is essentially problem driven'. That is, I will explore any possible approach/method in order to understand the problem better. Therefore I will not restrict myself to any particular approach/method, and I will be always willing to learn new ones. There are also typical approaches/methods that I will usually use, which include the following: invariant theory, method of convex geometry, semi-definite programing, quantum de Finetti's theorem, random sampling, information-theoretic methods, and the method of quantum circuits. These concrete approaches/methods will also give HQPs good training when applying them to each specific project toward achieving the short-term objectives.
I believe this work, if successful, will strengthen our understanding of correlation and entanglement in quantum systems, and how to make use of them.
我的研究方向是量子系统中的关联和纠缠理论,以及关联和纠缠在量子信息处理和多体物理中的作用。
纠缠是超越任何可能的经典关联的量子关联,在量子信息论和多体物理的研究中起着关键作用。经过几十年的努力,我们对量子纠缠的理解仍然有限。主要的困难在于希尔伯特空间的维数随着系统中粒子的数量呈指数增长。也就是说,一个多体量子态需要用指数形式的许多复杂参数来描述。
从这些参数中检索出最重要的量是至关重要的,这些量可以捕捉系统的物理或信息理论意义,这些意义可能具有基本或实际意义。我想通过拟议的研究实现的最终目标是从信息论的角度为量子系统中的相关性和纠缠发展一个一致和统一的理论,并了解它们如何使量子信息处理在基本层面上不同于经典的对应物。
为了实现这一长期目标,我的短期目标包括以下几点:在相同粒子系统中纠缠的(即操作)意义(玻色子和费米子);发展方法和条件来研究具有重叠边缘的量子边缘问题;理解相关性层次结构(即真正的“多体关联/纠缠")及其与拓扑纠缠熵概念的联系;研究约化密度矩阵的几何;并了解基于不同Hadamard矩阵的更一般设置下量子纠错码的结构。
所提出的研究基本上是问题驱动的。也就是说,我会探索任何可能的方法/途径,以便更好地理解问题。因此,我不会把自己限制在任何特定的方法/方法上,我总是愿意学习新的方法。还有一些我经常使用的典型方法,包括:不变量理论,凸几何方法,半定规划,量子de Finetti定理,随机抽样,信息论方法和量子电路方法。这些具体的方法/途径也将为HQP提供良好的培训,以便将其应用于每个具体项目,以实现短期目标。
我相信这项工作如果成功,将加强我们对量子系统中的相关性和纠缠的理解,以及如何利用它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zeng, Bei其他文献
Quantum Error-Correcting Codes for Qudit Amplitude Damping
- DOI:
10.1109/tit.2018.2790423 - 发表时间:
2018-06-01 - 期刊:
- 影响因子:2.5
- 作者:
Grassl, Markus;Kong, Linghang;Zeng, Bei - 通讯作者:
Zeng, Bei
16-qubit IBM universal quantum computer can be fully entangled
16量子位IBM通用量子计算机可实现全纠缠
- DOI:
10.1038/s41534-018-0095-x - 发表时间:
2018-09-27 - 期刊:
- 影响因子:7.6
- 作者:
Wang, Yuanhao;Li, Ying;Zeng, Bei - 通讯作者:
Zeng, Bei
Optimal design of measurement settings for quantum-state-tomography experiments
量子态断层扫描实验测量设置的优化设计
- DOI:
10.1103/physreva.96.032307 - 发表时间:
2017-09-06 - 期刊:
- 影响因子:2.9
- 作者:
Li, Jun;Huang, Shilin;Zeng, Bei - 通讯作者:
Zeng, Bei
Symmetric extension of two-qubit states
两个量子位状态的对称扩展
- DOI:
10.1103/physreva.90.032318 - 发表时间:
2014-09-17 - 期刊:
- 影响因子:2.9
- 作者:
Chen, Jianxin;Ji, Zhengfeng;Zeng, Bei - 通讯作者:
Zeng, Bei
Generalized concatenated quantum codes
- DOI:
10.1103/physreva.79.050306 - 发表时间:
2009-05-01 - 期刊:
- 影响因子:2.9
- 作者:
Grassl, Markus;Shor, Peter;Zeng, Bei - 通讯作者:
Zeng, Bei
Zeng, Bei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zeng, Bei', 18)}}的其他基金
Correlation and Entanglement in Quantum Systems
量子系统中的相关性和纠缠
- 批准号:
RGPIN-2016-03763 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Correlation and Entanglement in Quantum Systems
量子系统中的相关性和纠缠
- 批准号:
RGPIN-2016-03763 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Correlation and Entanglement in Quantum Systems
量子系统中的相关性和纠缠
- 批准号:
RGPIN-2016-03763 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Correlation and Entanglement in Quantum Systems
量子系统中的相关性和纠缠
- 批准号:
RGPIN-2016-03763 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Quantum information processing: coding, fault-tolerance, and models
量子信息处理:编码、容错和模型
- 批准号:
387070-2010 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Quantum information processing: coding, fault-tolerance, and models
量子信息处理:编码、容错和模型
- 批准号:
387070-2010 - 财政年份:2014
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Quantum information processing: coding, fault-tolerance, and models
量子信息处理:编码、容错和模型
- 批准号:
387070-2010 - 财政年份:2013
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Quantum information processing: coding, fault-tolerance, and models
量子信息处理:编码、容错和模型
- 批准号:
387070-2010 - 财政年份:2012
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Quantum information processing: coding, fault-tolerance, and models
量子信息处理:编码、容错和模型
- 批准号:
387070-2010 - 财政年份:2011
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Quantum information processing: coding, fault-tolerance, and models
量子信息处理:编码、容错和模型
- 批准号:
387070-2010 - 财政年份:2010
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
- 批准号:
2339469 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
- 批准号:
EP/Z000556/1 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Research Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
- 批准号:
2324300 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
- 批准号:
2238096 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Precise test of the B-meson quantum entanglement based on a new method for event topology determination
基于事件拓扑确定新方法的B介子量子纠缠精确测试
- 批准号:
23K03429 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum entanglement with atoms: from individual pairs to many-body systems
原子的量子纠缠:从个体对到多体系统
- 批准号:
FT220100670 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
ARC Future Fellowships
Study on CARS enhancement with quantum entanglement aiming at noninvasive glucose monitoring
针对无创血糖监测的量子纠缠CARS增强研究
- 批准号:
23K19224 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Theoretical study of quantum nature of gravity revealed from temporal correlation and quantum entanglement
从时间相关性和量子纠缠揭示引力量子本质的理论研究
- 批准号:
23H01175 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Complexity of quantum many-body systems: learnability, approximations, and entanglement
职业:量子多体系统的复杂性:可学习性、近似和纠缠
- 批准号:
2238836 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant














{{item.name}}会员




