Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles

经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估

基本信息

  • 批准号:
    RGPIN-2016-03978
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

For decades transportation vehicles have utilized polymer matrix composite (PMC) materials for secondary structural components, including aircraft aerodynamic fairings and interior automobile panels, due to their high strength and low weight when compared to metallic alloys. Only in recent years have they been utilized for primary structures, which stems from economic and societal concerns pressuring manufacturers to develop lighter fuel-efficient vehicles. Consequently, the long-term reliability of PMCs is now highly important, in particular for components with fatigue critical performance indicators such as automobile chassis side beams and aircraft wing spars. However, there exists a major scientific gap for addressing their performance under complex loading conditions. Currently, design tools for assessing the long-term behaviour of PMC structures are unavailable, where instead designers use inaccurate empirical failure theories. The resulting drawback is twofold: (i) designs are conservative and suboptimal, and (ii) manufacturers require extensive and costly test programs to certify new products. Since the 10-year forecast for lightweight PMC usage in transportation vehicles is an expected growth by 50% to meet drastic fuel efficiency targets, it is imperative to address these major issues. The proposed research program aims to generate a knowledge base for lightweight PMCs, and develop design tools for their long-term assessment in order to minimize the weight of next-generation composite vehicles. Through an experimental test program the multiaxial cyclic behaviour and failure processes of PMCs will be characterized, enabling the development of a physically-based multi-scale simulation platform for assessing their performance under repeated loading conditions. The long-term objective is to efficiently design and certify next-generation lightweight composite vehicles by integrating the model into the product design process. This work will redefine the understanding and usage of lightweight PMC materials for fatigue critical applications in transportation vehicles. This is the first study to consider multi-scale damage-based fatigue tools for the design of composite structures. With drastic fuel efficiency targets currently set by manufacturers, this ensures that the proposed research is timed correctly to develop the knowledge-base and enable technology required to better design next-generation lightweight composite vehicles, which are expected to be market-ready in the next decade. The innovative advancements made will increase the safety of vehicles and decrease development costs, allowing Canadian industry partners to stay competitive. New lightweight fuel-efficient vehicles will lead to reduced environmental impact, helping Canada gain global leadership in green technology, and reduce operating costs for end users of these products.
几十年来,运输车辆一直使用聚合物基复合材料(PMC)材料作为二次结构部件,包括飞机气动整流罩和汽车内饰,因为与金属合金相比,PMC材料具有高强度和低重量。直到最近几年,它们才被用于初级结构,这源于经济和社会担忧,迫使制造商开发更轻、更省油的汽车。因此,PMC的长期可靠性现在非常重要,特别是对于具有疲劳关键性能指标的部件,如汽车底盘侧梁和飞机翼梁。然而,在解决它们在复杂加载条件下的性能方面存在着重大的科学差距。 目前,还没有评估PMC结构长期性能的设计工具,相反,设计师使用的是不准确的经验失效理论。由此产生的缺陷有两个:(I)设计保守且不是最优的,(Ii)制造商需要广泛且昂贵的测试程序来认证新产品。由于预计未来10年交通工具中轻质PMC的使用量将增长50%,以实现严格的燃油效率目标,因此解决这些主要问题是当务之急。拟议的研究计划旨在为轻型PMC生成知识库,并为其长期评估开发设计工具,以便将下一代复合材料汽车的重量降至最低。通过一个实验测试程序,将表征PMCs的多轴循环行为和破坏过程,从而能够开发一个基于物理的多尺度模拟平台,用于评估其在重复加载条件下的性能。长期目标是通过将模型集成到产品设计过程中,有效地设计和认证下一代轻型复合材料汽车。这项工作将重新定义对用于运输车辆疲劳关键应用的轻质PMC材料的理解和使用。 这是首次将基于损伤的多尺度疲劳工具用于复合材料结构设计的研究。由于制造商目前设定了严格的燃油效率目标,这确保了拟议的研究在正确的时机开发知识库,并使更好地设计下一代轻型复合材料汽车所需的技术成为可能,这些汽车预计将在未来十年上市。所取得的创新进步将提高车辆的安全性,降低开发成本,使加拿大的行业合作伙伴保持竞争力。新的轻型节能汽车将减少对环境的影响,帮助加拿大在绿色技术方面获得全球领先地位,并降低这些产品的最终用户的运营成本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Montesano, Giovanni其他文献

Revisiting the Drasdo Model: Implications for Structure-Function Analysis of the Macular Region
  • DOI:
    10.1167/tvst.9.10.15
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Montesano, Giovanni;Ometto, Giovanni;Crabb, David P.
  • 通讯作者:
    Crabb, David P.
Predicting Visual Fields From Optical Coherence Tomography via an Ensemble of Deep Representation Learners
  • DOI:
    10.1016/j.ajo.2021.12.020
  • 发表时间:
    2022-02-06
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Lazaridis, Georgios;Montesano, Giovanni;Garway-Heath, David F.
  • 通讯作者:
    Garway-Heath, David F.
Vessel density, retinal thickness, and choriocapillaris vascular flow in myopic eyes on OCT angiography
Effect of fundus tracking on structure-function relationship in glaucoma
  • DOI:
    10.1136/bjophthalmol-2019-315070
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Montesano, Giovanni;Rossetti, Luca M.;Crabb, David P.
  • 通讯作者:
    Crabb, David P.
Comparison of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer Thickness Values Using Spectral-Domain and Swept-Source OCT.
  • DOI:
    10.1167/tvst.11.6.27
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Rabiolo, Alessandro;Fantaguzzi, Federico;Montesano, Giovanni;Brambati, Maria;Sacconi, Riccardo;Gelormini, Francesco;Triolo, Giacinto;Bettin, Paolo;Querques, Giuseppe;Bandello, Francesco
  • 通讯作者:
    Bandello, Francesco

Montesano, Giovanni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Montesano, Giovanni', 18)}}的其他基金

Integrated forming and impact simulation models for rapid liquid composite molded lightweight structures
快速液态复合材料成型轻质结构的集成成型和冲击模拟模型
  • 批准号:
    RGPIN-2022-03724
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
  • 批准号:
    RGPIN-2016-03978
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
  • 批准号:
    RGPIN-2016-03978
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling the development of safe lightweight next-generation vehicles using high-performance composite materials
使用高性能复合材料开发安全、轻量的下一代汽车
  • 批准号:
    507776-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Collaborative Research and Development Grants
Designing cost-effective high-performance residential wind turbines for remote Canadian communities
为加拿大偏远社区设计经济高效的高性能住宅风力涡轮机
  • 批准号:
    539274-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Engage Grants Program
Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
  • 批准号:
    RGPIN-2016-03978
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling the development of safe lightweight next-generation vehicles using high-performance composite materials
使用高性能复合材料开发安全、轻量的下一代汽车
  • 批准号:
    507776-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Collaborative Research and Development Grants
High Definition Infrared Thermographic System for Microscopic Assessment of New and Emerging Lightweight Materials
用于新型和新兴轻质材料显微评估的高清红外热成像系统
  • 批准号:
    RTI-2019-00240
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Tools and Instruments
Enabling the development of safe lightweight next-generation vehicles using high-performance composite materials
使用高性能复合材料开发安全、轻量的下一代汽车
  • 批准号:
    507776-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Collaborative Research and Development Grants
Experimentally validated physics-based multi-scale models for long-term durability assessment of next-generation lightweight composite vehicles
经过实验验证的基于物理的多尺度模型,用于下一代轻质复合材料车辆的长期耐久性评估
  • 批准号:
    RGPIN-2016-03978
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Development of a validated human iPSCs-derived microglia and brain organoid co-culture platform to investigate neuro-immune interactions
开发经过验证的人类 iPSC 衍生的小胶质细胞和脑类器官共培养平台,以研究神经免疫相互作用
  • 批准号:
    2884867
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship
Collaborative Research: Validated Complementarity Contact Conditions for Suction-Friction of Multiphasic Soft Materials
合作研究:验证多相软材料吸力摩擦的互补接触条件
  • 批准号:
    2224371
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Using AI and big data to identify a set of biologically validated drug targets for hard-to-treat cancers
使用人工智能和大数据来确定一组经过生物学验证的药物靶点,用于治疗难以治疗的癌症
  • 批准号:
    2886797
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship
Validated numerics for Iterated Function Schemes, Dynamical Systems and Random Walks
迭代函数方案、动力系统和随机游走的经过验证的数值
  • 批准号:
    EP/W033917/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
CDS&E: A Validated Hybrid Echo-CFD Framework for Patient-Specific Cardiac Assessment
CDS
  • 批准号:
    2152869
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Validated Complementarity Contact Conditions for Suction-Friction of Multiphasic Soft Materials
合作研究:验证多相软材料吸力摩擦的互补接触条件
  • 批准号:
    2224380
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Preparing Students for the Second Quantum Revolution Using Research-Validated Learning Tools
使用经过研究验证的学习工具让学生为第二次量子革命做好准备
  • 批准号:
    2309260
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
METASTRA: CoMputer-aided EffecTive frActure risk STRAtification of patients with vertebral metastases for personalised treatment through robust computational models validated in clinical settings
METATRA:通过在临床环境中验证的强大计算模型,对椎体转移患者进行计算机辅助有效骨折风险分层,以进行个性化治疗
  • 批准号:
    10075325
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了