New Models for Electronic Structure Prediction and Analysis
电子结构预测和分析的新模型
基本信息
- 批准号:RGPIN-2016-05755
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Most of the worlds major technological and societal challenges are being addressed through research in chemistry, including health, climate change, energy, security, and food supply. With rapid advances in computational power over the last two decades, advanced research computing (ARC) has now become an indispensable research tool in the chemical sciences and many other fields. Research scientists routinely rely on computational simulations to complement, and often exceed, what can be achieved with experiments alone, securing ARC as a transformative modern technology with broad socioeconomic impact in Canada. Unfortunately however, modern computational techniques for modelling chemical systems scale very poorly with molecular size, leading to a practical limit on the scope of molecular species accessible by computational means. Consequently, if computational techniques are to be reliably applied to the ever-increasing scope of important problems in chemistry, radically new computational models are required. Additionally, as the prevalence of computational simulation in chemistry expands, there is a concurrent need for techniques to distill relevant insight and meaning from resultant data, particularly for predictions of detailed electronic structures in quantum chemistry.
Recent work in our group has made significant strides toward providing innovative solutions to these important problems in chemistry. We have worked to establish a comprehensive, open, and interactive data management platform for the chemical sciences with capabilities for pattern recognition and complex queries. These new technologies for data-driven inquiry will allow researchers to distill new knowledge from a vast chemical data landscape, which promises to yield new industrial catalysts, advanced materials, medicines, and transformative new computational simulation techniques among countless other substantial applications. In particular, we will utilize the technology to design radically new computational models based on machine learning algorithms applied to large datasets. Additionally, we will develop electronic structure analysis tools that predict and interpret the distribution of electrons within chemical bonds and lone pairs, which affords unique qualitative and quantitative insight into how molecular species interact and react.
世界上大多数重大的技术和社会挑战都是通过化学研究来解决的,包括健康、气候变化、能源、安全和食品供应。在过去的二十年里,随着计算能力的快速发展,先进的研究计算(ARC)已经成为化学科学和许多其他领域不可或缺的研究工具。研究科学家通常依靠计算模拟来补充,甚至经常超过单独实验所能取得的成果,从而确保ARC成为一项具有广泛社会经济影响的变革性现代技术。然而,不幸的是,用于模拟化学系统的现代计算技术与分子大小的比例非常差,导致通过计算手段可获得的分子种类范围的实际限制。因此,如果要将计算技术可靠地应用于化学中日益广泛的重要问题,就需要全新的计算模型。此外,随着计算模拟在化学领域的普及,同时也需要从结果数据中提取相关见解和意义的技术,特别是在量子化学中详细电子结构的预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pearson, Jason其他文献
Modeling identifies variability in SARS-CoV-2 uptake and eclipse phase by infected cells as principal drivers of extreme variability in nasal viral load in the 48 h post infection.
- DOI:
10.1016/j.jtbi.2023.111470 - 发表时间:
2023-05-21 - 期刊:
- 影响因子:2
- 作者:
Pearson, Jason;Wessler, Timothy;Chen, Alex;Boucher, Richard C.;Freeman, Ronit;Lai, Samuel K.;Pickles, Raymond;Forest, Gregory - 通讯作者:
Forest, Gregory
Pearson, Jason的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pearson, Jason', 18)}}的其他基金
New Models for Electronic Structure Prediction and Analysis
电子结构预测和分析的新模型
- 批准号:
RGPIN-2016-05755 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
New Models for Electronic Structure Prediction and Analysis
电子结构预测和分析的新模型
- 批准号:
RGPIN-2016-05755 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
New Models for Electronic Structure Prediction and Analysis
电子结构预测和分析的新模型
- 批准号:
RGPIN-2016-05755 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
New Models for Electronic Structure Prediction and Analysis
电子结构预测和分析的新模型
- 批准号:
RGPIN-2016-05755 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
New Models for Electronic Structure Prediction and Analysis
电子结构预测和分析的新模型
- 批准号:
RGPIN-2016-05755 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Computer aided molecular design with applications to human health and disease
计算机辅助分子设计在人类健康和疾病中的应用
- 批准号:
386479-2011 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Computer aided molecular design with applications to human health and disease
计算机辅助分子设计在人类健康和疾病中的应用
- 批准号:
386479-2011 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Computer aided molecular design with applications to human health and disease
计算机辅助分子设计在人类健康和疾病中的应用
- 批准号:
386479-2011 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Computer aided molecular design with applications to human health and disease
计算机辅助分子设计在人类健康和疾病中的应用
- 批准号:
386479-2011 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Computer aided molecular design with applications to human health and disease
计算机辅助分子设计在人类健康和疾病中的应用
- 批准号:
386479-2011 - 财政年份:2011
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Predictive models for incident cirrhosis in non-alcoholic fatty liver disease using genetic and electronic medical record-based risk factors
使用基于遗传和电子病历的危险因素对非酒精性脂肪肝病中的肝硬化事件进行预测模型
- 批准号:
10425053 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
New Risk Models for Diabetes Complications Using Electronic Health Records
使用电子健康记录的糖尿病并发症的新风险模型
- 批准号:
10597118 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Electronic Structure Models Using Coarse-Grained Representations
使用粗粒度表示的电子结构模型
- 批准号:
2154916 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
An innovative electronic preoperative assessment solution using GP data and ML/AI models that could reduce nursing time required per patient by 40%
An%20创新%20电子%20术前%20评估%20解决方案%20使用%20GP%20数据%20和%20ML/AI%20模型%20那个%20可以%20减少%20护理%20时间%20必需%20每%20患者%20by%2040%
- 批准号:
10035750 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative R&D
Predictive models for incident cirrhosis in non-alcoholic fatty liver disease using genetic and electronic medical record-based risk factors
使用基于遗传和电子病历的危险因素对非酒精性脂肪肝病中的肝硬化事件进行预测模型
- 批准号:
10612450 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Electronic structure theory: Approximations to the exchange-correlation energy and models for electron transport
电子结构理论:交换关联能的近似和电子传输模型
- 批准号:
RGPIN-2016-04862 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
New Models for Electronic Structure Prediction and Analysis
电子结构预测和分析的新模型
- 批准号:
RGPIN-2016-05755 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Drug repositioning for Alzheimer's disease via genetics, electronic health records, and human iPSC models
通过遗传学、电子健康记录和人类 iPSC 模型对阿尔茨海默病进行药物重新定位
- 批准号:
10390283 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Drug repositioning for Alzheimer's disease via genetics, electronic health records, and human iPSC models
通过遗传学、电子健康记录和人类 iPSC 模型对阿尔茨海默病进行药物重新定位
- 批准号:
10554325 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:














{{item.name}}会员




