Hidden features and information diffusion in large social networks
大型社交网络中的隐藏特征和信息传播
基本信息
- 批准号:RGPIN-2017-05112
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In social networks, connections are made based on a degree of communality between the users. Typically, links are more likely if users share common features or belong to the same community. Network formation can be modelled by assuming the nodes to be embedded in a feature space, and links to be formed through a stochastic process which depends on the distance between the nodes in the underlying space. The aim of the proposed research is to develop models and algorithms that will allow for the extraction of the latent feature space from the link structure of large networks. I will use theoretical tools to study the relationship between spatial features of the nodes and the link structure, using the infinite limit to understand the behaviour as the network gets large. I will also further develop and analyze a spatial model for growing networks, built on the principle of preferential attachment, which leads to graphs that exhibit commonly observed features such as a power law degree distribution, high clustering, and the presence of long links that lead to the small world property.
The first objective of this research is to develop methods to test whether a given graph is likely the result of a spatially informed link formation process, and what are the characteristics of the underlying space. Once an appropriate spatial model for a given class of networks has been established, the developed theory will lead to improved methods for common link mining tasks, such as community extraction and quantification of node similarity. This can have important applications in the analysis of on-line social networks towards targeted marketing, or identification of fraudulent or criminal elements. These methods may also be of use in the analysis of biological networks, such as protein interaction networks or food webs.
A second aim of the proposed work is to study the effect of the network and its underlying spatial structure on the diffusion of information and the evolution of behavioural strategies. Of particular interest are models based on game theory. On a network, nodes adopt a game strategy, and play a strategic game with their neighbours. Each node receives a pay-off that depends on the strategy of its neighbours. Nodes then are given a chance to change their strategy to that of a neighbour with a higher pay-off. This leads to a spread of successful strategies through the network. My interest is in studying how the network structure affects such dynamic processes. Moreover, using spatial network models, I will focus on the question to what extend the underlying space informs these processes.
In short, the goal of the proposed research is to study stochastic spatial models to gain a nuanced understanding of the hidden deep information that is expressed by the link structure of a large complex network, and of the dynamic processes that propagate along its links.
在社交网络中,基于用户之间的公共性程度来建立连接。通常,如果用户共享共同的功能或属于同一社区,则链接更有可能。网络形成可以通过假设节点嵌入特征空间中来建模,并且通过随机过程形成链接,该随机过程取决于底层空间中节点之间的距离。提出的研究的目的是开发模型和算法,将允许从大型网络的链接结构的潜在特征空间的提取。我将使用理论工具来研究节点的空间特征和链接结构之间的关系,使用无限极限来理解网络变大时的行为。我还将进一步开发和分析一个基于优先连接原则的增长网络的空间模型,该模型导致显示出常见特征的图形,例如幂律度分布,高聚类以及导致小世界属性的长链接的存在。
本研究的第一个目标是开发方法来测试一个给定的图是否可能是一个空间上知情的链接形成过程的结果,以及底层空间的特征是什么。一旦为给定类别的网络建立了适当的空间模型,所开发的理论将为常见的链接挖掘任务带来改进的方法,例如社区提取和节点相似性的量化。这在分析在线社交网络以进行有针对性的营销或识别欺诈或犯罪分子方面具有重要的应用。这些方法也可用于分析生物网络,如蛋白质相互作用网络或食物网。
拟议工作的第二个目的是研究网络及其基本空间结构对信息传播和行为策略演变的影响。特别感兴趣的是基于博弈论的模型。 在网络中,节点采用博弈策略,与邻居进行策略博弈。每个节点收到的回报取决于其邻居的策略。然后,节点有机会将其策略改变为具有更高回报的邻居的策略。这导致了成功策略在网络中的传播。我的兴趣是研究网络结构如何影响这种动态过程。此外,使用空间网络模型,我将重点关注的问题,以何种程度的潜在空间通知这些过程。
简而言之,所提出的研究的目标是研究随机空间模型,以获得对隐藏的深层信息的细致入微的理解,这些信息是由大型复杂网络的链接结构表达的,以及沿着其链接传播的动态过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janssen, Jeannette其他文献
Characterizing and Mining the Citation Graph of the Computer Science Literature
- DOI:
10.1007/s10115-003-0128-3 - 发表时间:
2004-11-01 - 期刊:
- 影响因子:2.7
- 作者:
An, Yuan;Janssen, Jeannette;Milios, Evangelos E. - 通讯作者:
Milios, Evangelos E.
How to Burn a Graph
- DOI:
10.1080/15427951.2015.1103339 - 发表时间:
2016-03-03 - 期刊:
- 影响因子:0
- 作者:
Bonato, Anthony;Janssen, Jeannette;Roshanbin, Elham - 通讯作者:
Roshanbin, Elham
A noncommutative approach to the graphon Fourier transform
图子傅立叶变换的非交换方法
- DOI:
10.1016/j.acha.2022.06.004 - 发表时间:
2022 - 期刊:
- 影响因子:2.5
- 作者:
Ghandehari, Mahya;Janssen, Jeannette;Kalyaniwalla, Nauzer - 通讯作者:
Kalyaniwalla, Nauzer
Geometric Protean Graphs
- DOI:
10.1080/15427951.2012.625246 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:0
- 作者:
Bonato, Anthony;Janssen, Jeannette;Pralat, Pawe L. - 通讯作者:
Pralat, Pawe L.
An Optimization Parameter for Seriation of Noisy Data
噪声数据序列化的优化参数
- DOI:
10.1137/18m1174544 - 发表时间:
2019 - 期刊:
- 影响因子:0.8
- 作者:
Ghandehari, Mahya;Janssen, Jeannette - 通讯作者:
Janssen, Jeannette
Janssen, Jeannette的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janssen, Jeannette', 18)}}的其他基金
Hidden features and information diffusion in large social networks
大型社交网络中的隐藏特征和信息传播
- 批准号:
RGPIN-2017-05112 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Hidden features and information diffusion in large social networks
大型社交网络中的隐藏特征和信息传播
- 批准号:
RGPIN-2017-05112 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Hidden features and information diffusion in large social networks
大型社交网络中的隐藏特征和信息传播
- 批准号:
RGPIN-2017-05112 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Hidden features and information diffusion in large social networks
大型社交网络中的隐藏特征和信息传播
- 批准号:
RGPIN-2017-05112 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
A flexible optimization tool for direct marketing campaigns
用于直接营销活动的灵活优化工具
- 批准号:
492420-2015 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Engage Grants Program
Geometric graphs to model a world of connections
几何图形来模拟连接的世界
- 批准号:
203246-2012 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Network-based prediction for social marketing on Instagram
基于网络的 Instagram 社交营销预测
- 批准号:
499483-2016 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Engage Grants Program
Geometric graphs to model a world of connections
几何图形来模拟连接的世界
- 批准号:
203246-2012 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Geometric graphs to model a world of connections
几何图形来模拟连接的世界
- 批准号:
203246-2012 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Geometric graphs to model a world of connections
几何图形来模拟连接的世界
- 批准号:
203246-2012 - 财政年份:2013
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Multidimensional brain connectome features of depression and anxiety
抑郁和焦虑的多维脑连接组特征
- 批准号:
10571512 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Semantic integration of protein epitopes and functional features for infectious and autoimmune disease knowledge discovery
用于传染病和自身免疫性疾病知识发现的蛋白质表位和功能特征的语义整合
- 批准号:
10442059 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Representation of attentional priority for visual features in the human brain
人脑视觉特征的注意力优先级表示
- 批准号:
10440619 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Decoding Hippocampal-Parietal contributions to spatial navigation in a mouse modeling Tau and AB aggregation features of Alzheimer's Disease
解码海马顶叶对阿尔茨海默病 Tau 和 AB 聚集特征建模小鼠空间导航的贡献
- 批准号:
10707032 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Semantic integration of protein epitopes and functional features for infectious and autoimmune disease knowledge discovery
用于传染病和自身免疫性疾病知识发现的蛋白质表位和功能特征的语义整合
- 批准号:
10596633 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Decoding Hippocampal-Parietal contributions to spatial navigation in a mouse modeling Tau and AB aggregation features of Alzheimer's Disease
解码海马顶叶对阿尔茨海默病 Tau 和 AB 聚集特征建模小鼠空间导航的贡献
- 批准号:
10537553 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Representation and integration of diverse visual features in circuits and behavior
电路和行为中不同视觉特征的表示和整合
- 批准号:
10368451 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Representation of attentional priority for visual features in the human brain
人脑视觉特征的注意力优先级表示
- 批准号:
10707522 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Alignment of visual features in binocular cortical circuits through experience dependent synaptic plasticity
通过经验依赖的突触可塑性调整双眼皮层回路中的视觉特征
- 批准号:
10534839 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Representation and integration of diverse visual features in circuits and behavior
电路和行为中不同视觉特征的表示和整合
- 批准号:
10569578 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别: