Computational Discrepancy Theory

计算差异理论

基本信息

  • 批准号:
    RGPIN-2016-06333
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The focus of this research is computational aspects of combinatorial discrepancy theory, including the development of applications of discrepancy to computer science, and understanding the computational complexity of discrepancy itself. First, we propose to study applications of discrepancy theory to differential privacy. Differential privacy is a recent approach to achieving strong provable privacy guarantees in the analysis of sensitive data. The accuracy of query answers computed under differential privacy must necessarily be traded off for the privacy guarantees in any non-trivial analysis. We propose to generalize the connection between discrepancy theory and differential privacy we developed in prior work in the context of linear queries, in order to characterize the necessary and sufficient error for privately answering convex minimization queries. These queries encompass a large number of primitives used in machine learning and statistics. We further propose to study applications of discrepancy theory to the design of efficient approximation algorithms for hard optimization problems. Combinatorial discrepancy has the potential to generalize and unify classical rounding methods for linear and semidefinite programs, such as randomized and iterative rounding, and was recently used to give an improved approximation algorithm for the bin packing problem. We propose to study the applicability of discrepancy-based rounding to other fundamental optimization problems. Moreover, recent progress on spectral notions of discrepancy, particularly the resolution of the Kadison-Singer problem, suggests that discrepancy based rounding may be applicable to semidefinite programs as well. Conversely, discrepancy lower bounds imply negative results for natural classes of rounding algorithms. We propose to study whether the negative results proved via discrepancy methods can be turned into proofs of integrality gaps, i.e. gaps between the optimal integral solution and the value of a linear programming relaxation. Finally, we propose to study computational questions in discrepancy theory itself. The computational complexity of many of the important measures of discrepancy remains open. Moreover, some of the most powerful methods of constructing low discrepancy structures are only existential, and do not provide efficient algorithms. Both of these concerns currently limit the applicability of discrepancy methods to algorithm design. We propose to extend tools we have developed in prior work to understand the complexity of approximating hereditary discrepancy to other combinatorial discrepancy measures. We also propose to develop algorithmic techniques to construct low discrepancy objects.
本研究的重点是计算方面的组合差异理论,包括差异的应用程序,计算机科学的发展,并了解计算复杂性的差异本身。 首先,我们建议研究差异理论在差异隐私中的应用。差分隐私是最近的一种方法,以实现强有力的可证明的隐私保证在敏感数据的分析。在任何非平凡的分析中,在差分隐私下计算的查询答案的准确性必须与隐私保证相权衡。我们建议推广的差异理论和差分隐私之间的联系,我们在以前的工作中开发的线性查询的背景下,为了刻画的必要和充分的错误,私下回答凸最小化查询。这些查询包含了机器学习和统计中使用的大量原语。 我们进一步建议研究应用差异理论设计有效的近似算法硬优化问题。组合差异有可能推广和统一经典的舍入方法的线性和半定规划,如随机和迭代舍入,最近被用来给一个改进的近似算法装箱问题。我们建议研究基于差异的舍入对其他基本优化问题的适用性。此外,最近的进展谱概念的差异,特别是解决的Kadison-Singer问题,表明差异为基础的四舍五入可能适用于半定程序。相反,差异下限意味着舍入算法的自然类的负面结果。我们建议研究通过差异方法证明的否定结果是否可以变成完整性差距的证明,即最佳积分解和线性规划松弛值之间的差距。 最后,我们建议研究计算问题的差异理论本身。许多重要的差异度量的计算复杂性仍然是开放的。此外,一些构造低差异结构的最强大的方法仅仅是存在的,并且不提供有效的算法。这两个问题目前限制了差异方法的算法设计的适用性。我们建议扩展工具,我们已经开发了在以前的工作,以了解近似遗传差异的复杂性,其他组合的差异措施。我们还建议开发算法技术来构建低差异对象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nikolov, Aleksandar其他文献

Optimization of geopolymers based on natural zeolite clinoptilolite by calcination and use of aluminate activators
  • DOI:
    10.1016/j.conbuildmat.2020.118257
  • 发表时间:
    2020-05-20
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Nikolov, Aleksandar;Nugteren, Henk;Rostovsky, Ivan
  • 通讯作者:
    Rostovsky, Ivan
Approximate Nearest Neighbors Beyond Space Partitions
空间分区之外的近似最近邻
Private Query Release Assisted by Public Data
公共数据辅助私密查询发布
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bassily, Raef;Cheu, Albert;Moran, Shay;Nikolov, Aleksandar;Ullman, Jonathan;Wu, Zhiwei Steven
  • 通讯作者:
    Wu, Zhiwei Steven
Geopolymer materials based on natural zeolite
  • DOI:
    10.1016/j.cscm.2017.03.001
  • 发表时间:
    2017-06-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Nikolov, Aleksandar;Rostovsky, Ivan;Nugteren, Henk
  • 通讯作者:
    Nugteren, Henk

Nikolov, Aleksandar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nikolov, Aleksandar', 18)}}的其他基金

Algorithms and Private Data Analysis
算法和私有数据分析
  • 批准号:
    CRC-2020-00004
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Canada Research Chairs
Geometric Methods in Data Analysis
数据分析中的几何方法
  • 批准号:
    RGPAS-2021-00030
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Geometric Methods in Data Analysis
数据分析中的几何方法
  • 批准号:
    RGPIN-2021-03206
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Methods in Data Analysis
数据分析中的几何方法
  • 批准号:
    RGPAS-2021-00030
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Geometric Methods in Data Analysis
数据分析中的几何方法
  • 批准号:
    RGPIN-2021-03206
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms And Private Data Analysis
算法和私有数据分析
  • 批准号:
    CRC-2020-00004
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Canada Research Chairs
Algorithms and Private Data Analysis
算法和私有数据分析
  • 批准号:
    1000230936-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Canada Research Chairs
Algorithms and Private Data Analysis
算法和私有数据分析
  • 批准号:
    1000233061-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Canada Research Chairs
Computational Discrepancy Theory
计算差异理论
  • 批准号:
    RGPIN-2016-06333
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Private Data Analysis
算法和私有数据分析
  • 批准号:
    1000230936-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Canada Research Chairs

相似海外基金

Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
  • 批准号:
    2327010
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
  • 批准号:
    2327011
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Discrepancy between the transfer of Japanese-style management and its actual practice
日本式管理的转移与实际的差异
  • 批准号:
    23H00854
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Effects of discrepancy training between visual and somatosensory information on the reweighting of sensory inputs in the elderly
视觉与体感信息差异训练对老年人感觉输入重新加权的影响
  • 批准号:
    23K10755
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Maximum Mean Discrepancy Kerenels
最大平均差异核
  • 批准号:
    2882934
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Studentship
Collaborative Research: Multi-Mode Apparatus to Resolve the Discrepancy Concerning Big G
合作研究:解决大G差异的多模式装置
  • 批准号:
    2207796
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Continuing Grant
Collaborative Research: Multi-mode Apparatus to Resolve the Discrepancy Concerning Big G
合作研究:解决大G差异的多模式装置
  • 批准号:
    2207801
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Continuing Grant
Influence of discrepancy between subjective and objective sleep duration with health anxiety on diagnosis and prognosis of insomnia disorder
主客观睡眠时间差异与健康焦虑对失眠症诊断及预后的影响
  • 批准号:
    22K07590
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Psychological research on the discrepancy between planning and execution
计划与执行差异的心理学研究
  • 批准号:
    22K01727
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CIF: Small: Coding-theoretic methods in discrepancy and energy optimization, with applications
CIF:小:差异和能量优化中的编码理论方法及其应用
  • 批准号:
    2104489
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了