Topology and Correlation in Quantum Materials
量子材料中的拓扑和相关性
基本信息
- 批准号:RGPIN-2017-03774
- 负责人:
- 金额:$ 4.08万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recently, there has been tremendous progress in understanding so--called topological phases of matter in weakly interacting electron systems. Here topology plays an important role in the sense that these phases of matter are characterized by certain physical quantities invariant under smooth deformations of material parameters. As a result, many physical properties of such phases are inherently insensitive to various microscopic details of materials. The initial idea of topological phases has recently been awarded the Physics Nobel prize in 2016. The most studied example of topological phases is topological insulators, where the bulk of the material is electrically inert, but the surface is metallic. These metallic surface states are intrinsically resilient to imperfections such as impurities. This so--called topological protection of surface states is considered a promising route to new technologies.
On the other hand, topological materials in strongly interacting electron systems are relatively less explored. It has become clear that our current understanding of weakly interacting electron systems cannot directly be applied to systems with strong correlation. In the current proposal, the principal investigator (PI) proposes to explore possible topological phases in strongly correlated quantum materials, where the electron interactions play a fundamentally important role. In particular, the PI aims to make direct connection between theoretical models for these novel phases and real materials. The virtue of finding such phases is that they would allow robust and peculiar electronic/magnetic properties in the bulk and surface, which are not possible in weakly interacting analogs. Further, strong electron interaction would provide additional knobs to control topologically protected surface states, for example via magnetism, and offer more flexible applications to new technologies.
Recently, the PI's group has pioneered new directions in this line of research and developed several theoretical models for correlated quantum materials, where strong entanglement between spin and orbital degrees of freedom of electrons plays a pivotal role. Building on these achievements, the PI is planning to investigate general organizing principles for correlated topological phases. This would open a new avenue in understanding of new topological phenomena, unique to correlated electron materials. Utilizing unusual surface states of topological materials, the PI would also explore engineered interface states between topological and conventional systems. These exercises would offer great intellectual challenges to both theories and experiments, and significant societal impact via future technological applications such as fundamentally new ways to perform certain computational tasks in next generation computers.
最近,在理解弱相互作用电子系统中所谓的物质拓扑相方面取得了巨大进展。在这里,拓扑学起着重要的作用,因为物质的这些相在材料参数的光滑变形下具有一定的物理量不变的特征。因此,这种相的许多物理性质天生对材料的各种微观细节不敏感。拓扑相的最初想法最近获得了2016年的诺贝尔物理学奖。拓扑相研究最多的例子是拓扑绝缘体,其中大部分材料是电惰性的,但表面是金属的。这些金属表面状态对杂质等缺陷具有内在的弹性。这种所谓的表面状态拓扑保护被认为是一种有前途的新技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kim, YongBaek其他文献
Kim, YongBaek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kim, YongBaek', 18)}}的其他基金
Topology and Correlation in Quantum Materials
量子材料中的拓扑和相关性
- 批准号:
RGPIN-2017-03774 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Topology and Correlation in Quantum Materials
量子材料中的拓扑和相关性
- 批准号:
RGPIN-2017-03774 - 财政年份:2019
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Topology and Correlation in Quantum Materials
量子材料中的拓扑和相关性
- 批准号:
RGPIN-2017-03774 - 财政年份:2018
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Topology and Correlation in Quantum Materials
量子材料中的拓扑和相关性
- 批准号:
RGPIN-2017-03774 - 财政年份:2017
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Topological Phases in Correlated Materials
相关材料中的拓扑相
- 批准号:
249763-2012 - 财政年份:2015
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Topological Phases in Correlated Materials
相关材料中的拓扑相
- 批准号:
429571-2012 - 财政年份:2014
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Topological Phases in Correlated Materials
相关材料中的拓扑相
- 批准号:
249763-2012 - 财政年份:2014
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Topological Phases in Correlated Materials
相关材料中的拓扑相
- 批准号:
249763-2012 - 财政年份:2013
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Topological Phases in Correlated Materials
相关材料中的拓扑相
- 批准号:
429571-2012 - 财政年份:2013
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Topological Phases in Correlated Materials
相关材料中的拓扑相
- 批准号:
249763-2012 - 财政年份:2012
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Theoretical study of quantum nature of gravity revealed from temporal correlation and quantum entanglement
从时间相关性和量子纠缠揭示引力量子本质的理论研究
- 批准号:
23H01175 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Excited State Specific Correlation Methods in Quantum Chemistry
量子化学中激发态特定关联方法
- 批准号:
2320936 - 财政年份:2023
- 资助金额:
$ 4.08万 - 项目类别:
Standard Grant
Universally Applicable Model Wavefunction Forms for Strong and Weak Electron Correlation in Quantum Chemistry
量子化学中强电子关联和弱电子关联的通用模型波函数形式
- 批准号:
RGPIN-2017-05566 - 财政年份:2022
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Exploring Nonlinear Electrodynamics from Topology and Correlation in Layered Quantum Materials
职业:从层状量子材料的拓扑和相关性探索非线性电动力学
- 批准号:
2143426 - 财政年份:2022
- 资助金额:
$ 4.08万 - 项目类别:
Continuing Grant
Optical correlation super-resolution imaging with quantum entangled photon pair probes
使用量子纠缠光子对探针进行光学相关超分辨率成像
- 批准号:
22H01499 - 财政年份:2022
- 资助金额:
$ 4.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: New Platforms for Topology, Correlation, and Superconductivity in Quantum Materials
职业:量子材料拓扑、相关性和超导性的新平台
- 批准号:
2045781 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Continuing Grant
Universally Applicable Model Wavefunction Forms for Strong and Weak Electron Correlation in Quantum Chemistry
量子化学中强电子关联和弱电子关联的通用模型波函数形式
- 批准号:
RGPIN-2017-05566 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Topology and Correlation in Quantum Materials
量子材料中的拓扑和相关性
- 批准号:
RGPIN-2017-03774 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Strong correlation and strong coupling effects in the excitonic phase and its vicinity region based on the first-principles calculations and the quantum many-body calculations
基于第一性原理计算和量子多体计算的激子相及其邻近区域的强关联和强耦合效应
- 批准号:
21K03399 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Universally Applicable Model Wavefunction Forms for Strong and Weak Electron Correlation in Quantum Chemistry
量子化学中强电子关联和弱电子关联的通用模型波函数形式
- 批准号:
RGPIN-2017-05566 - 财政年份:2020
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual