Accurate High-Performance Atomic Structure Calculations

准确的高性能原子结构计算

基本信息

  • 批准号:
    RGPIN-2017-03851
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to improve the accuracy of results from the GRASP2K computational model by a factor of 10 for given computer resources by developing new high-performance software that is more efficient, easier to maintain, and can be modified readily for future developments in atomic theory. This requires: 1) Redesigning programs to adhere to current software engineering principles of design and using efficient algorithms for large cases. 2) Recasting programs in the most advanced scientific programming language for high-performance computing. 3) Introducing a proper modular style that anticipates future changes in the model of the nucleus, the Breit correction, and QED effects that define H. History shows clearly that accuracy can have tremendous impact on the advancement of science. An example is Tycho Brahe (1546-1601) who dedicated his life to developing tools for recording planetary positions ten times more accurately than before. His data was accurate enough for Kepler to discover that the planets moved in elliptic orbits which gave Newton the clues he needed to establish universal inverse-square gravitation theory. In quantum mechanics, the state of an electronic system is described by a wave function W that satisfies the wave equation H W = E W. Here H is the Hamiltonian of the system and E the total energy. For an atom with N electrons, the wave equation is a partial differential equation with 3N space variables. What makes the problem challenging are the singularities that occur when the distance between the two electrons goes to zero. Observable properties of the system are expectation values of quantum mechanical operators. Thus, when H and W are known, all atomic properties can be predicted. For light atoms, H often is the non-relativistic Hamiltonian. For heavy elements H needs to be based on fully relativistic Dirac theory that includes quantum electrodynamic effects, and a finite model for the nucleus. H for superheavy elements is a current research topic. In atomic physics an accurate computed result needs to agree with an experimental result reported as a value and an uncertainty. For any given H, a challenge for the computational model are the singularities, i.e. correlation in the motion of the electrons. Test cases for the development of the software will be drawn from current research topics in physics, done in collaboration with international colleagues. The biggest challenges are presented by calculations for heavy elements or highly ionized atoms. An example is the element Astatine (N=85) that is currently being considered for use in targeted cancer therapy. Experimental studies are planned in Sweden. Another critical test would be spectrum calculations for Uranium (N=92) where reliable results have not been reported. In the case of superheavy elements for the search of “islands of stability”, the code could be an important tool for the development of new physics theory.
该项目的目标是通过开发新的高性能软件,使GRASP 2K计算模型的结果精度提高10倍,该软件更高效,更易于维护,并且可以随时修改,以适应原子理论的未来发展。这需要: 1)重新设计程序,以遵守当前的软件工程设计原则,并对大型案例使用有效的算法。 2)用最先进的科学编程语言重铸程序,以实现高性能计算。 3)介绍了一种适当的模块化风格,预计未来的变化,在模型的核心,布雷特修正,和QED效应,定义H。 历史清楚地表明,准确性对科学的进步有着巨大的影响。第谷·布拉赫(Tycho Brahe,1546-1601)就是一个例子,他毕生致力于开发记录行星位置的工具,比以前精确十倍。 他的数据是准确的开普勒发现,行星运行在椭圆轨道这给了牛顿的线索,他需要建立普遍的平方反比引力理论。 在量子力学中,电子系统的状态由满足波动方程HW = EW的波函数W描述。这里H是系统的哈密顿量,E是总能量。对于一个有N个电子的原子,波动方程是一个有3 N个空间变量的偏微分方程。使这个问题具有挑战性的是当两个电子之间的距离为零时发生的奇点。 系统的可观测性质是量子力学算符的期望值。因此,当H和W已知时,所有的原子性质都可以预测。对于轻原子,H通常是非相对论性哈密顿量。 对于重元素,H需要基于完全相对论性的狄拉克理论,包括量子电动力学效应和原子核的有限模型。超重元素H是当前的研究课题。 在原子物理学中,精确的计算结果需要与以数值和不确定度报告的实验结果一致。 对于任何给定的H,计算模型的挑战是奇点,即电子运动中的相关性。 该软件开发的测试用例将从当前的物理学研究课题中提取,并与国际同事合作完成。最大的挑战是重元素或高度电离原子的计算。 一个例子是元素Astatine(N=85),目前正在考虑用于靶向癌症治疗。计划在瑞典进行实验研究。 另一个关键的测试是铀(N=92)的光谱计算,其中可靠的结果尚未报告。 在超重元素的“稳定岛”搜索的情况下,代码可以成为新物理理论发展的重要工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FroeseFischer, Charlotte其他文献

FroeseFischer, Charlotte的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FroeseFischer, Charlotte', 18)}}的其他基金

Accurate High-Performance Atomic Structure Calculations
准确的高性能原子结构计算
  • 批准号:
    RGPIN-2017-03851
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate High-Performance Atomic Structure Calculations
准确的高性能原子结构计算
  • 批准号:
    RGPIN-2017-03851
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate High-Performance Atomic Structure Calculations
准确的高性能原子结构计算
  • 批准号:
    RGPIN-2017-03851
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate High-Performance Atomic Structure Calculations
准确的高性能原子结构计算
  • 批准号:
    RGPIN-2017-03851
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

EAGER: Quantum Manufacturing: Atomic-layer Etching Manufacturing Processes for High Performance Superconducting Quantum Devices
EAGER:量子制造:高性能超导量子器件的原子层蚀刻制造工艺
  • 批准号:
    2234390
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Atomic-Level Structure and Dynamic Evolutions in Cobalt-Free High-Performance Sodium-Ion Battery Cathode
无钴高性能钠离子电池正极的原子级结构和动态演化
  • 批准号:
    EP/Y024958/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Fellowship
Accurate High-Performance Atomic Structure Calculations
准确的高性能原子结构计算
  • 批准号:
    RGPIN-2017-03851
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Creation of Fuel-Cell Electrocatalysts by Irradiation-Induced Atomic Vacancies: Performance Control Based on Clarification of Dynamic Behavior
通过辐照诱导原子空位制备燃料电池电催化剂:基于动态行为澄清的性能控制
  • 批准号:
    21H04669
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Compact optics for high performance portable atomic timing and quantum sensors
用于高性能便携式原子计时和量子传感器的紧凑型光学器件
  • 批准号:
    133978
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    CR&D Bilateral
NanoThermal Analyzer (NanoTA) Module for Atomic Force Microscopy (AFM) for Effective Characterization and Assessment of the Properties and Long-Term Performance of Novel FRP Materials
用于原子力显微镜 (AFM) 的纳米热分析仪 (NanoTA) 模块,可有效表征和评估新型 FRP 材料的特性和长期性能
  • 批准号:
    RTI-2020-00476
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Tools and Instruments
Proposal of high-performance materials for artificial synapses via atomic-scale observations of resistive switching oxides
通过电阻开关氧化物的原子尺度观察提出用于人工突触的高性能材料
  • 批准号:
    19K04484
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Highly Sensitive Atomic Dynamics Measurement System for the Improvement of the Performance of Tires
开发高灵敏原子动力学测量系统以提高轮胎性能
  • 批准号:
    19K20600
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Accurate High-Performance Atomic Structure Calculations
准确的高性能原子结构计算
  • 批准号:
    RGPIN-2017-03851
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate High-Performance Atomic Structure Calculations
准确的高性能原子结构计算
  • 批准号:
    RGPIN-2017-03851
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了