Parametric Embedding of Non-parametric Problems

非参数问题的参数嵌入

基本信息

  • 批准号:
    RGPIN-2017-03855
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Statistical inference with ranked data is inherently non-parametric. The strength of non-parametric statistics is that it can lead to efficient procedures while making few assumptions on the underlying distributions. On the other hand, non-parametric statistics does not generally rely on the use of a likelihood function, which limits the development of the usual inferential methods common in parametric statistics. Empirical likelihood methods have represented a major advance in this direction. Another advance consists of a parametric embedding of non-parametric inference problems to bridge the apparent gap between parametric and non-parametric statistics. My long term vision is two-fold: first, to integrate various non-parametric problems into the main stream of parametric statistics via a parametric embedding and second, to go beyond and make use of parametric methods in the embedded family to gain additional insight into various common non-parametric problems. The key to deriving fundamental results on non-parametric inference with the embedding approach lies in the appropriate choice of the parametric family. My short-term goals are to first revisit important developments in non-parametric and semi parametric inferences using this parametric embedding approach as a versatile tool that provides simplifying insights into complicated settings and extends optimality arguments from parametric to non-parametric and semi parametric problems. Then, I plan to build on some recent successes and further demonstrate that a likelihood function can be fruitfully defined for several non-parametric problems and to obtain new optimality results. The embedding approach is based on an adaptation of an earlier result of Neyman in which a smooth alternative distribution was defined for a goodness of fit problem. Combined with the use of the Rao score test, this leads to the asymptotic distribution of the score functions considered. In this way, it is possible for example, to obtain Friedman's test for randomized block design and to demonstrate its local optimality properties. In this proposal, I plan to extend the embedding approach to the more complicated setting involving left truncated and right censored (LTRC) data. As well, I plan to further exploit the use of penalized likelihood in order to reduce the dimension of the score functions considered. Another goal is to consider some real-world applications to relate this theory to practice. In terms of impact, this unified approach to non-parametric statistics is novel and is based on some of my recent results. It will provide additional tools for further development of methodology in various settings. This proposal will train 8 HQP, who will develop skills in theoretical and practical statistical analysis of data, preparing them for careers as the case may be, in academia, government or private enterprise.
对排名数据的统计推断本质上是非参数的。非参数统计的优势在于,它可以导致有效的程序,而对基本分布几乎不作假设。另一方面,非参数统计一般不依赖于似然函数的使用,这限制了参数统计中常见的常见推断方法的发展。经验似然方法代表了这一方向的重大进步。另一项进步包括参数嵌入非参数推理问题,以弥合参数和非参数统计之间的明显差距。我的长期愿景有两个:第一,通过参数嵌入将各种非参数问题整合到参数统计的主流中,第二,超越并利用嵌入家族中的参数方法,以获得对各种常见非参数问题的更多洞察。用嵌入方法推导非参数推理的基本结果的关键在于参数族的适当选择。我的短期目标是首先回顾非参数和半参数推理的重要发展,使用这种参数嵌入方法作为一种多功能工具,提供对复杂环境的简化见解,并将最优化论证从参数问题扩展到非参数和半参数问题。然后,我计划在最近的一些成功的基础上,进一步证明对于几个非参数问题,可以有效地定义一个似然函数,并获得新的最优性结果。嵌入方法是基于对Neyman早期结果的适应,在该结果中,为拟合优度问题定义了平滑的备选分布。结合Rao分数检验的使用,这导致了所考虑的分数函数的渐近分布。这样,例如,可以获得随机区组设计的Friedman检验,并证明其局部最优性。在这项提议中,我计划将嵌入方法扩展到涉及左截断和右审查(LTRC)数据的更复杂的设置。此外,我还计划进一步利用惩罚似然的使用,以减少所考虑的得分函数的维度。另一个目标是考虑一些现实世界的应用,将这一理论与实践联系起来。就影响而言,这种统一的非参数统计方法是新颖的,基于我最近的一些结果。它将为在各种情况下进一步发展方法提供更多的工具。 这项建议将培训8名HQP,他们将发展数据的理论和实际统计分析技能,为他们在学术界、政府或私营企业的职业生涯做好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alvo, Mayer其他文献

Nonparametric multiple comparison procedures for unbalanced one-way factorial designs
Nonparametric multiple comparison procedures for unbalanced two-way layouts
Parametric embedding of nonparametric inference problems
非参数推理问题的参数嵌入

Alvo, Mayer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alvo, Mayer', 18)}}的其他基金

Parametric Embedding of Non-parametric Problems
非参数问题的参数嵌入
  • 批准号:
    RGPIN-2017-03855
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Parametric Embedding of Non-parametric Problems
非参数问题的参数嵌入
  • 批准号:
    RGPIN-2017-03855
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Parametric Embedding of Non-parametric Problems
非参数问题的参数嵌入
  • 批准号:
    RGPIN-2017-03855
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Parametric Embedding of Non-parametric Problems
非参数问题的参数嵌入
  • 批准号:
    RGPIN-2017-03855
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical analyses for ranking data
排名数据统计分析
  • 批准号:
    9068-2009
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical analyses for ranking data
排名数据统计分析
  • 批准号:
    9068-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical analyses for ranking data
排名数据统计分析
  • 批准号:
    9068-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical analyses for ranking data
排名数据统计分析
  • 批准号:
    9068-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical analyses for ranking data
排名数据统计分析
  • 批准号:
    9068-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
1.Statistical analysis for ranking data 2. The measurement of non-precise data
1.排名数据的统计分析 2.非精确数据的计量
  • 批准号:
    9068-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Job share: Embedding environmental and geospatial science in nature recovery and rewilding
工作分享:将环境和地理空间科学融入自然恢复和野化中
  • 批准号:
    NE/Y005163/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
  • 批准号:
    2345437
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
  • 批准号:
    2348490
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Job Share: Embedding environmental and geospatial science in nature recovery and rewilding
工作分享:将环境和地理空间科学融入自然恢复和野化中
  • 批准号:
    NE/Y005155/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
  • 批准号:
    2345438
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Creative Health Boards: A New Model for Embedding Creative Health and Community Assets in Health Systems across the UK
创意健康委员会:将创意健康和社区资产融入英国卫生系统的新模式
  • 批准号:
    AH/Z505377/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
SBIR Phase I: Methods for Embedding User Data into 3D Generative AI Computer-aided-Design Models
SBIR 第一阶段:将用户数据嵌入 3D 生成式 AI 计算机辅助设计模型的方法
  • 批准号:
    2335491
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
DEFRA Embedding Economics into the Fourth UK Climate Change Risk Assessment
DEFRA 将经济学纳入第四次英国气候变化风险评估
  • 批准号:
    ES/Y005236/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Fellowship
Towards Embedding Responsible AI in the School System: Co-Creation with Young People
将负责任的人工智能嵌入学校系统:与年轻人共同创造
  • 批准号:
    AH/Z505560/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了