Rational points on algebraic varieties
代数簇的有理点
基本信息
- 批准号:RGPIN-2017-03970
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the fundamental problems of number theory is to describe the
set of rational or integer solutions to Diophantine equations, which
are polynomial equations in several variables with integer
coefficients. My research program investigates the distribution of
rational solutions to systems of Diophantine equations, in several
directions.
Paul Vojta has made some wide-ranging conjectures on what kinds of
solutions Diophantine equations should have, based on the geometric
properties of the solution sets of these equations. In my future
research, I propose to study these conjectures, to improve on my
previous proofs of various special cases of them, and to use existing
results to gain further insight into the solutions of Diophantine
equations.
In particular, I am interested in the distribution of rational points
on K3 surfaces. I have already proven many results in this area,
including (with Logan and van Luijk) a proof that the rational points
on many diagonal quartic surfaces are dense in the real and Zariski
topology, and a proof of the celebrated Batyrev-Manin Conjecture that
is conditional on Vojta's Main Conjecture.
I have, in joint work with Michael Roth, investigated how close two points with rational coordinates can get to one another, in terms of the geometry of the object the points lie on. Even more, we have obtained some results in which one of the points doesn't have rational coordinates, but instead has coordinates that are the roots of polynomials with rational coefficients. This has proven to be deep and interesting work, and I am continuing to work on proving more interesting results in this area.
数论的一个基本问题是如何描述
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
McKinnon, David其他文献
Quantifying Multiscale Habitat Structural Complexity: A Cost-Effective Framework for Underwater 3D Modelling
- DOI:
10.3390/rs8020113 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:5
- 作者:
Ferrari, Renata;McKinnon, David;Upcroft, Ben - 通讯作者:
Upcroft, Ben
Evolution of CpG island promoter function underlies changes in KChIP2 potassium channel subunit gene expression in mammalian heart
- DOI:
10.1073/pnas.1114516109 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:11.1
- 作者:
Yan, Qinghong;Masson, Rajeev;McKinnon, David - 通讯作者:
McKinnon, David
Evolution of ventricular myocyte electrophysiology
- DOI:
10.1152/physiolgenomics.00159.2007 - 发表时间:
2008-11-01 - 期刊:
- 影响因子:4.6
- 作者:
Rosati, Barbara;Dong, Min;McKinnon, David - 通讯作者:
McKinnon, David
Common and differential transcriptional responses to different models of traumatic stress exposure in rats
- DOI:
10.1038/s41398-018-0223-6 - 发表时间:
2018-08-23 - 期刊:
- 影响因子:6.8
- 作者:
Jacobson, Moriah L.;Kim, Lydia A.;McKinnon, David - 通讯作者:
McKinnon, David
Development and validation of an astronomy self-efficacy instrument for understanding and doing
开发和验证用于理解和实践的天文学自我效能工具
- DOI:
10.1103/physrevphyseducres.18.010117 - 发表时间:
2022 - 期刊:
- 影响因子:3.1
- 作者:
Freed, Rachel;McKinnon, David;Fitzgerald, Michael;Norris, Christina M. - 通讯作者:
Norris, Christina M.
McKinnon, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('McKinnon, David', 18)}}的其他基金
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Distribution of rational and integral points on algebraic varieties
代数簇上有理点和积分点的分布
- 批准号:
250196-2012 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Distribution of rational and integral points on algebraic varieties
代数簇上有理点和积分点的分布
- 批准号:
250196-2012 - 财政年份:2014
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Distribution of rational and integral points on algebraic varieties
代数簇上有理点和积分点的分布
- 批准号:
250196-2012 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Distribution of rational and integral points on algebraic varieties
代数簇上有理点和积分点的分布
- 批准号:
250196-2012 - 财政年份:2012
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Rational points on algebric varieties
代数簇的有理点
- 批准号:
250196-2007 - 财政年份:2011
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Rational points on algebric varieties
代数簇的有理点
- 批准号:
250196-2007 - 财政年份:2010
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Rational points on algebric varieties
代数簇的有理点
- 批准号:
250196-2007 - 财政年份:2009
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
光子人工微结构中Exceptional Points附近的模式耦合及相关新特性研究
- 批准号:11674247
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
用多重假设检验方法来研究方差变点问题
- 批准号:10901010
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Rational points on algebraic varieties
代数簇的有理点
- 批准号:
RGPIN-2017-03970 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Distribution of rational and integral points on algebraic varieties
代数簇上有理点和积分点的分布
- 批准号:
250196-2012 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Distribution of rational and integral points on algebraic varieties
代数簇上有理点和积分点的分布
- 批准号:
250196-2012 - 财政年份:2014
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Distribution of rational and integral points on algebraic varieties
代数簇上有理点和积分点的分布
- 批准号:
250196-2012 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Distribution of rational and integral points on algebraic varieties
代数簇上有理点和积分点的分布
- 批准号:
250196-2012 - 财政年份:2012
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




