Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
基本信息
- 批准号:RGPIN-2018-04088
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research interest lies in quantifying the similarity of sets of objects, based on their characteristic attributes and features, in a manner similar to humans performing the same task. In this regard, the focus of the proposed work is to combine my expertise in descriptively near sets and general purpose computing using GPUs (GPGPU) to augment and develop new theory for current approaches to machine learning and deep neural networks (DNN), as well as to produce further gains in the accuracy and applicability of these techniques.
As is well known, in 2012 A. Krizhevsky et al. won the ILSVRC using a convolutional neural network driven by GPU. Their work demonstrated that the combination of GPUs, large labelled datasets, and DNN could solve a real-world image classification problem. This event, and the subsequent progress, raised the following question: had the problem of quantifying the similarity of sets of objects been effectively solved by these networks? The answer is No, and the search for new approaches forms the foundation of the proposed work. Human behaviour is much richer than simply its ability to classify objects. We have a powerfully inherent ability to make judgements on the similarity of groups of objects, which we perform seamlessly and unconsciously many times a day. Thus, there is a strong need for the combination of theoretical frameworks for quantifying similarity and the current exciting developments in the field of machine learning. The motivation of the proposed work is to develop theoretical and computational frameworks for the synthesis of human perception of the similarity of sets of objects. The mathematical foundation of this work is descriptive topology and descriptive proximity spaces (i.e. descriptive near set theory), which formalize relationships between objects, sets of objects, and collections of these sets based on features that characterize intrinsic object attributes.
As the field of descriptive topology and descriptive proximity spaces is quite new, as well as computational approaches to these concepts, the novelty of the proposed work is very high. Further, no one is working at the intersection of descriptive approaches and high performance computing (HPC) or considering how these techniques can enrich and extend current deep learning algorithms to the problem of quantifying the similarity of objects, sets of objects, and families of sets. Deep neural networks have revolutionized large swathes of society. Examples range from self-driving cars to real-time language translation. At their heart, neural networks are pattern classifiers, meaning they take an unknown pattern and place it into one of a finite number of classes. The proposed work is to quantify the similarity of sets of objects. This simple, yet different, concept has the potential to be as revolutionary as neural networks if algorithms capable of human-level performance can be achieved.
我的研究兴趣在于量化对象集合的相似性,基于它们的特征属性和特征,以类似于人类执行相同任务的方式。在这方面,拟议工作的重点是结合我在描述性近集和使用GPU的通用计算(GPGPU)方面的专业知识,为当前的机器学习和深度神经网络(DNN)方法补充和发展新的理论,以及在这些技术的准确性和适用性方面取得进一步的进展。
众所周知,2012年,A.Krizevsky等人。使用由GPU驱动的卷积神经网络赢得了ILSVRC。他们的工作表明,GPU、大型标记数据集和DNN的组合可以解决现实世界的图像分类问题。这一事件以及随后的进展提出了以下问题:这些网络是否有效地解决了量化目标集合相似性的问题?答案是否定的,寻找新的方法是拟议工作的基础。人类的行为远比简单地将物体分类的能力丰富得多。我们有一种强大的与生俱来的能力来判断一组对象的相似性,我们每天都会无缝地、无意识地执行很多次。因此,迫切需要将量化相似性的理论框架与当前机器学习领域令人兴奋的发展相结合。这项拟议工作的动机是开发理论和计算框架,用于合成人类对对象集合的相似性的感知。这项工作的数学基础是描述性拓扑和描述性邻近空间(即描述性接近集理论),它基于表征对象固有属性的特征来形式化对象、对象集合和这些集合之间的关系。
由于描述性拓扑学和描述性邻近性空间领域是一个相当新的领域,以及对这些概念的计算方法,所提出的工作的新颖性非常高。此外,没有人研究描述性方法和高性能计算(HPC)的交叉点,也没有人考虑这些技术如何丰富和扩展当前的深度学习算法,以量化对象、对象集和集合族的相似性。深度神经网络已经彻底改变了社会的大片领域。从自动驾驶汽车到实时语言翻译,例子很多。从本质上讲,神经网络是模式分类器,这意味着它们接受未知模式,并将其归入有限数量的类别中的一个。建议的工作是量化对象集之间的相似性。这个简单但不同的概念有可能像神经网络一样具有革命性,如果能够实现能够达到人类水平的算法的话。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henry, Christopher其他文献
Detectable signals of episodic risk effects on acute HIV transmission: strategies for analyzing transmission systems using genetic data.
可检测的情节风险影响对急性HIV传播的影响:使用遗传数据分析传输系统的策略。
- DOI:
10.1016/j.epidem.2012.11.003 - 发表时间:
2013-03 - 期刊:
- 影响因子:3.8
- 作者:
Alam, Shah Jamal;Zhang, Xinyu;Romero-Severson, Ethan Obie;Henry, Christopher;Zhong, Lin;Volz, Erik M.;Brenner, Bluma G.;Koopman, James S. - 通讯作者:
Koopman, James S.
Predicting Long-Term Outcomes in Pleural Infections RAPID Score for Risk Stratification
- DOI:
10.1513/annalsats.201505-272oc - 发表时间:
2015-09-01 - 期刊:
- 影响因子:8.3
- 作者:
White, Heath D.;Henry, Christopher;Ghamande, Shekhar - 通讯作者:
Ghamande, Shekhar
Impact of angiotensin-converting enzyme inhibitors and statins on viral pneumonia.
- DOI:
10.1080/08998280.2018.1499293 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:0
- 作者:
Henry, Christopher;Zaizafoun, Manaf;White, Heath D - 通讯作者:
White, Heath D
A Molecular Communication model for cellular metabolism
细胞代谢的分子通讯模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zahmeeth, Sakkaff;Freiburger, Andrew P.;Catlett, Jennie L.;Cashman, Mikaela;Immaneni, Aditya;Buan, Nicole R.;Cohen, Myra B.;Henry, Christopher;Pierobon, Massimiliano - 通讯作者:
Pierobon, Massimiliano
John Goodsir: discovering Sarcina ventriculi and diagnosing Darwin's dyspepsia
- DOI:
10.1177/0036933020912329 - 发表时间:
2020-03-24 - 期刊:
- 影响因子:2.7
- 作者:
Donaldson, Ken;Henry, Christopher - 通讯作者:
Henry, Christopher
Henry, Christopher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henry, Christopher', 18)}}的其他基金
Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
- 批准号:
RGPIN-2018-04088 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
- 批准号:
RGPIN-2018-04088 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
- 批准号:
RGPIN-2018-04088 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Customer Profiling and Prediction of Revenue, Cost and Margin Based on Customer Behaviour
基于客户行为的客户分析和收入、成本和利润预测
- 批准号:
523140-2018 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Customer profiling and prediction of revenue, cost and margin based on customer behaviour
根据客户行为进行客户分析并预测收入、成本和利润
- 批准号:
534252-2018 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Engage Plus Grants Program
Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
- 批准号:
RGPIN-2018-04088 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
High performance computing framework for GCM-driven climate change simulation with the routing model WATROUTE
使用路由模型 WTROUTE 进行 GCM 驱动的气候变化模拟的高性能计算框架
- 批准号:
508025-2017 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Engage Plus Grants Program
Real-time, machine-learning weed detection system for autonomous agricultural machines
用于自主农业机器的实时机器学习杂草检测系统
- 批准号:
513865-2017 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Neighbourhood Based Image Analysis
基于邻域的图像分析
- 批准号:
418413-2012 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Neighbourhood Based Image Analysis
基于邻域的图像分析
- 批准号:
418413-2012 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Intersection Theory for Differential Equations
微分方程的交集理论
- 批准号:
2401570 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
RII Track-4:NSF: The Intersection of Social Science and the Law: Plea Bargaining Policies in Law and Practice
RII Track-4:NSF:社会科学与法律的交叉点:法律与实践中的辩诉交易政策
- 批准号:
2327169 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Exploring the intersection between climate change, inequality and health
探索气候变化、不平等和健康之间的交叉点
- 批准号:
2908633 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Studentship
A Greener Recovery of Air Transport System : Drivers for change at the intersection of markets, technology, and policy
航空运输系统的绿色复苏:市场、技术和政策交叉点的变革驱动力
- 批准号:
23K25557 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Understanding the Intersection of Ageism, Ableism, and Racism in the Healthcare Systems: From the Experiences of Access to Services of Racialized Older Adults Living with Dementia
了解医疗保健系统中年龄歧视、残疾歧视和种族主义的交叉点:来自患有痴呆症的种族化老年人获得服务的经验
- 批准号:
497386 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Investigating the Intersection of Activism, Digital Media and Carbon Dioxide Removal at H2Teesside
调查 H2Teesside 的行动主义、数字媒体和二氧化碳清除的交叉点
- 批准号:
2882006 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Studentship
EAGER/Collaborative Research: Switching Structures at the Intersection of Mechanics and Networks
EAGER/协作研究:力学和网络交叉点的切换结构
- 批准号:
2306824 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
The Intersection of Art and Technology in Maurice Martenot's Music and Humanism
莫里斯·马特诺音乐与人文主义中艺术与技术的交汇
- 批准号:
23KJ2230 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Hierarchy and intersection of hallmarks of aging using genetic, pharmacologic, and dietary life span extending interventions in flies and mice.
使用遗传、药理学和饮食延长果蝇和小鼠寿命的干预措施,研究衰老标志的层次结构和交叉点。
- 批准号:
10901046 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Technologies of Futuring: Computational Modeling Practices at the Intersection of Environmental Governance and Environmental Justice
未来技术:环境治理与环境正义交叉点的计算建模实践
- 批准号:
2240748 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant