High performance computing framework for GCM-driven climate change simulation with the routing model WATROUTE

使用路由模型 WTROUTE 进行 GCM 驱动的气候变化模拟的高性能计算框架

基本信息

  • 批准号:
    508025-2017
  • 负责人:
  • 金额:
    $ 0.91万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Plus Grants Program
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Manitoba Hydro's resource planning process is influenced by a variety of factors including water supply andelectrical energy demand. As a result, understanding the sensitivity of planning decisions to future streamflowscenarios are important to their integrated resource planning process. Streamflow scenarios can be developedby combining global climate model simulated runoff values with the WATROUTE routing model for theNelson-Churchill Watershed. The routing model is implemented in WATROUTE, the routing component ofthe Canadian Hydrological Model (CHARM) suite of programs. Further, WATROUTE is the computationalbottleneck for the streamflow simulation processes, incurring long runtimes, especially when projecting manyyears into the future. Thus, finding ways of significantly reducing the runtime of WATROUTE is of greatimportance to Manitoba Hydro. Moreover, the parallel nature of the routing model is an ideal fit for executionon the massively parallel processors inherent in graphics processing units (GPUs), which have recently becomeavailable for general-purpose scientific computing. This work is an extension of the results from an EngageGrant with Manitoba Hydro, where the aim was to create a highly-parallel, GPU-based,high-performance-computing implementation of the WATROUTE routing model to assist Manitoba Hydro'sresource planning process. Tremendous progress was achieved toward this aim through significant reduction inthe routing model runtime. As a result, the aim of this Engage Plus Grant is to pursue the reduction ofWATROUTE's overall runtime using GPUs, produce a release ready version of WATROUTE, explore theapplication of WATROUTE to datasets previously too large to process, and investigate the use ofWATROUTE on systems with multiple GPUs. Benefits realized by this work may also have a positive impacton the MEC-Surface and Hydrology System (MESH) and the Canadian Regional Climate Model, as both useWATROUTE.
马尼托巴水电的资源规划过程受到各种因素的影响,包括水供应和电能需求。因此,了解规划决策对未来径流情景的敏感性对他们的综合资源规划过程非常重要。通过将全球气候模型模拟的径流值与纳尔逊-丘吉尔流域的WATROUTE路由模型相结合,可以制定径流情景。该路由模型在加拿大水文模型(CHARM)程序套件的路由组件WATROUTE中实现。此外,水路是水流模拟过程的计算瓶颈,导致运行时间长,特别是在预测未来许多年时。因此,找到显著减少WATROUTE运行时间的方法对马尼托巴水电公司至关重要。此外,路由模型的并行特性非常适合在图形处理单元(GPU)中固有的大规模并行处理器上执行,这些GPU最近已可用于通用科学计算。这项工作是对与马尼托巴水电合作的EngageGrant项目结果的扩展,其目的是创建一个高度并行、基于GPU、高性能计算的WATROUTE路由模型实现,以协助马尼托巴水电的资源规划过程。通过显著减少路由模型的运行时间,实现了这一目标的巨大进步。因此,该Engage Plus Grant的目的是追求使用GPU减少WATROUTE的整体运行时间,生产WATROUTE的发布就绪版本,探索WATROUTE对以前太大而无法处理的数据集的应用,并研究WATROUTE在具有多个GPU的系统上的使用。这项工作所实现的效益也可能对MEC-Surface and Hydrology System(MESH)和加拿大区域气候模式产生积极影响,因为两者都使用WATROUTE。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry, Christopher其他文献

Detectable signals of episodic risk effects on acute HIV transmission: strategies for analyzing transmission systems using genetic data.
可检测的情节风险影响对急性HIV传播的影响:使用遗传数据分析传输系统的策略。
  • DOI:
    10.1016/j.epidem.2012.11.003
  • 发表时间:
    2013-03
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Alam, Shah Jamal;Zhang, Xinyu;Romero-Severson, Ethan Obie;Henry, Christopher;Zhong, Lin;Volz, Erik M.;Brenner, Bluma G.;Koopman, James S.
  • 通讯作者:
    Koopman, James S.
Predicting Long-Term Outcomes in Pleural Infections RAPID Score for Risk Stratification
  • DOI:
    10.1513/annalsats.201505-272oc
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    White, Heath D.;Henry, Christopher;Ghamande, Shekhar
  • 通讯作者:
    Ghamande, Shekhar
Impact of angiotensin-converting enzyme inhibitors and statins on viral pneumonia.
A Molecular Communication model for cellular metabolism
细胞代谢的分子通讯模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zahmeeth, Sakkaff;Freiburger, Andrew P.;Catlett, Jennie L.;Cashman, Mikaela;Immaneni, Aditya;Buan, Nicole R.;Cohen, Myra B.;Henry, Christopher;Pierobon, Massimiliano
  • 通讯作者:
    Pierobon, Massimiliano
John Goodsir: discovering Sarcina ventriculi and diagnosing Darwin's dyspepsia
  • DOI:
    10.1177/0036933020912329
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Donaldson, Ken;Henry, Christopher
  • 通讯作者:
    Henry, Christopher

Henry, Christopher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry, Christopher', 18)}}的其他基金

Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
  • 批准号:
    RGPIN-2018-04088
  • 财政年份:
    2022
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
  • 批准号:
    RGPIN-2018-04088
  • 财政年份:
    2021
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
  • 批准号:
    RGPIN-2018-04088
  • 财政年份:
    2020
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
  • 批准号:
    RGPIN-2018-04088
  • 财政年份:
    2019
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Customer Profiling and Prediction of Revenue, Cost and Margin Based on Customer Behaviour
基于客户行为的客户分析和收入、成本和利润预测
  • 批准号:
    523140-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Engage Grants Program
Customer profiling and prediction of revenue, cost and margin based on customer behaviour
根据客户行为进行客户分析并预测收入、成本和利润
  • 批准号:
    534252-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Engage Plus Grants Program
Exploring the Intersection of Set Proximity, Parallel Computing, and Machine Learning
探索集合邻近度、并行计算和机器学习的交叉点
  • 批准号:
    RGPIN-2018-04088
  • 财政年份:
    2018
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time, machine-learning weed detection system for autonomous agricultural machines
用于自主农业机器的实时机器学习杂草检测系统
  • 批准号:
    513865-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Engage Grants Program
Neighbourhood Based Image Analysis
基于邻域的图像分析
  • 批准号:
    418413-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Neighbourhood Based Image Analysis
基于邻域的图像分析
  • 批准号:
    418413-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

普适计算环境下基于交互迁移与协作的智能人机交互研究
  • 批准号:
    61003219
  • 批准年份:
    2010
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
面向认知网络的自律计算模型及评价方法研究
  • 批准号:
    60973027
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
普适环境下移动事务关键技术研究
  • 批准号:
    60773089
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
量子信息资源理论与应用研究
  • 批准号:
    60573008
  • 批准年份:
    2005
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目
网格环境下的协同工作理论与关键技术研究
  • 批准号:
    90412009
  • 批准年份:
    2004
  • 资助金额:
    30.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

CC* Planning: Establishing a Sustainable Framework for High-Performance Computing Growth at Wichita State University
CC* 规划:为威奇托州立大学高性能计算增长建立可持续框架
  • 批准号:
    2346097
  • 财政年份:
    2024
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Standard Grant
Continuous development of nTracer2 and its deployment at NIH image repositories
nTracer2 的持续开发及其在 NIH 图像存储库中的部署
  • 批准号:
    10726178
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
Neural and behavioral mechanisms of song learning in zebra finches
斑胸草雀鸣叫学习的神经和行为机制
  • 批准号:
    10678601
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
Integrating cancer genomics and spatial architecture of tumor infiltrating lymphocytes
整合癌症基因组学和肿瘤浸润淋巴细胞的空间结构
  • 批准号:
    10637960
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
Revealing and Resolving Institutional Racism in the NICU
揭示并解决新生儿重症监护病房中的制度性种族主义
  • 批准号:
    10743828
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
Scaling up computational genomics with tree sequences
用树序列扩展计算基因组学
  • 批准号:
    10585745
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
Integration of electronic medical records and neighborhood contextual indicators into machine learning strategies for identifying pregnant individuals at risk of depression in underserved communities
将电子病历和社区背景指标整合到机器学习策略中,以识别服务欠缺社区中面临抑郁风险的孕妇
  • 批准号:
    10741143
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
Quality Improvement in time to Treatment of Status Epilepticus (QuITT-SE)
癫痫持续状态治疗的及时质量改进 (QuITT-SE)
  • 批准号:
    10720249
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
Multi-cancer early detection using cell-free DNA methylome analysis
使用游离 DNA 甲基化分析进行多癌症早期检测
  • 批准号:
    10763305
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
Evaluating the utility of cis-regulatory element graphs for modeling gene regulation
评估顺式调控元件图在基因调控建模中的效用
  • 批准号:
    10776793
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了