Deformation of Engineering Materials Across length and time Scales (DEMAS)
工程材料在长度和时间尺度上的变形 (DEMAS)
基本信息
- 批准号:RGPIN-2017-04969
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed program aims to study deformation of engineering materials across length and time scales. The long term objective of this research program is to be able to assess and enhance structural integrity and performance of the metallic and non-metallic composites used in three strategic industries: nuclear, aerospace, and transportation. The materials that are used in these industries are very often exposed to hostile environments while carrying mechanical loads. In such environments, materials deform reversibly (elastically) or irreversibly (plastically). Plastic deformation can potentially localize at particular points in engineering components and subsequently lead to crack nucleation and catastrophic failure.
Finite element is a powerful numerical technique that can be used for simulating elastic and plastic deformation of materials. Crystal plasticity, as a constitutive model for materials' deformation, can further enhance the power of finite element to study mechanisms of deformation localization. Numerical studies often require experimental observations for both development and validation. For instance, electron or X-ray microscopy can be used to study localized deformation at nano and meso scales.
The aim of this program is to characterize, formulate, and simulate localized plastic deformation; the applicant proposes to develop three numerical and experimental toolboxes that can significantly improve our fundamental understanding of deformation:
I) Developing a temperature dependent non-local crystal plasticity finite element code for modelling plastic deformation caused by formation of slip bands and twins. The code will be able to simulate interaction between point defects and line defects. This is a unique and novel capability as through such formulation, void formation resulting from diffusion of defects or climb of line defects can be studied; hence, the model can be used to study and simulate creep, fatigue, and eventually fracture of polycrystals.
II) Developing a world leading capability for running temperature dependent in-situ High Resolution Electron BackScatter Diffraction and High Resolution Digital Image Correlation techniques. Both techniques are based on the use of scanning electron microscopes; they can be used for measuring localized deformation at nano, meso, and macro scales and hence validate the code that will be developed in (I).
The immediate application of (I) and (II) is in the Canadian nuclear industry. With the aging of CANDU reactors, irradiation enhanced creep has become a major concern. This mode of deformation is a time dependent plastic deformation the modelling of which is the primarily goal of (I). Another application of this research is in the aerospace industry. Creep and fatigue resistance of titanium and nickel alloys are the two main factors in manufacturing jet engines components.
该计划旨在研究工程材料在长度和时间尺度上的变形。该研究计划的长期目标是能够评估和提高用于三个战略行业的金属和非金属复合材料的结构完整性和性能:核,航空航天和运输。在这些行业中使用的材料在承受机械载荷的同时经常暴露于恶劣的环境中。在这样的环境中,材料可逆地(弹性地)或不可逆地(塑性地)变形。塑性变形可以潜在地局部化在工程部件中的特定点处,并且随后导致裂纹成核和灾难性失效。
有限元是一种强大的数值技术,可以用来模拟材料的弹性和塑性变形。晶体塑性作为材料变形的本构模型,可以进一步增强有限元研究变形局部化机理的能力。数值研究往往需要实验观测的发展和验证。例如,电子或X射线显微镜可用于研究纳米和介观尺度的局部变形。
该计划的目的是表征,制定和模拟局部塑性变形;申请人提出开发三个数值和实验工具箱,可以显着提高我们对变形的基本理解:
I)开发了一个温度相关的非局部晶体塑性有限元代码,用于模拟由滑移带和孪晶形成引起的塑性变形。该代码将能够模拟点缺陷和线缺陷之间的相互作用。这是一个独特的和新颖的能力,通过这样的配方,可以研究由缺陷的扩散或线缺陷的爬升导致的空隙形成;因此,该模型可以用于研究和模拟蠕变,疲劳,并最终断裂的多晶体。
II)开发世界领先的运行温度相关原位高分辨率电子背散射衍射和高分辨率数字图像相关技术的能力。这两种技术都是基于使用扫描电子显微镜;它们可以用于测量在纳米,介观和宏观尺度的局部变形,因此验证代码,将在(I)中开发。
(一)和(二)的直接应用是在加拿大的核工业。随着CANDU反应堆的老化,辐照增强蠕变已成为一个主要关注的问题。这种变形模式是时间依赖性塑性变形,其建模是(I)的主要目标。这项研究的另一个应用是在航空航天工业。钛和镍合金的抗蠕变和抗疲劳性是制造喷气发动机部件的两个主要因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abdolvand, Hamidreza其他文献
Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal: Part I - in-situ three-dimensional synchrotron X-ray diffraction measurement
- DOI:
10.1016/j.actamat.2015.04.020 - 发表时间:
2015-07-01 - 期刊:
- 影响因子:9.4
- 作者:
Abdolvand, Hamidreza;Majkut, Marta;Daymond, Mark R. - 通讯作者:
Daymond, Mark R.
On the effects of texture and microstructure on hydrogen transport towards notch tips: A CPFE study
- DOI:
10.1016/j.ijplas.2022.103234 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:9.8
- 作者:
Tondro, Alireza;Abdolvand, Hamidreza - 通讯作者:
Abdolvand, Hamidreza
Assessment of residual stress fields at deformation twin tips and the surrounding environments
- DOI:
10.1016/j.actamat.2015.11.036 - 发表时间:
2016-02-15 - 期刊:
- 影响因子:9.4
- 作者:
Abdolvand, Hamidreza;Wilkinson, Angus J. - 通讯作者:
Wilkinson, Angus J.
Accurate determination of grain properties using three-dimensional synchrotron X-ray diffraction: A comparison with EBSD
- DOI:
10.1016/j.matchar.2020.110753 - 发表时间:
2021-01-28 - 期刊:
- 影响因子:4.7
- 作者:
Louca, Karim;Abdolvand, Hamidreza - 通讯作者:
Abdolvand, Hamidreza
Diffusion and redistribution of hydrogen atoms in the vicinity of localized deformation zones
- DOI:
10.1016/j.mechmat.2022.104544 - 发表时间:
2022-12-18 - 期刊:
- 影响因子:3.9
- 作者:
Tondro, Alireza;Taherijam, Masoud;Abdolvand, Hamidreza - 通讯作者:
Abdolvand, Hamidreza
Abdolvand, Hamidreza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abdolvand, Hamidreza', 18)}}的其他基金
The micromechanics of ductile to brittle fracture in polycrystals
多晶韧脆断裂的微观力学
- 批准号:
RGPIN-2022-02955 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Live observation of materials cracking at multiple length scales
实时观察多个长度尺度的材料开裂
- 批准号:
RTI-2023-00013 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Research Tools and Instruments
The micromechanics of fracture of hydrides in Zr-2.5Nb CANDU pressure tubes
Zr-2.5Nb CANDU压力管中氢化物断裂的微观力学
- 批准号:
560391-2020 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Alliance Grants
Deformation of Engineering Materials Across length and time Scales (DEMAS)
工程材料在长度和时间尺度上的变形 (DEMAS)
- 批准号:
RGPIN-2017-04969 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
The micromechanics of fracture of hydrides in Zr-2.5Nb CANDU pressure tubes
Zr-2.5Nb CANDU压力管中氢化物断裂的微观力学
- 批准号:
560391-2020 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Alliance Grants
Deformation of Engineering Materials Across length and time Scales (DEMAS)
工程材料在长度和时间尺度上的变形 (DEMAS)
- 批准号:
RGPIN-2017-04969 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Additive manufacturing of Hastelloy X: the effects of the process parameters on the state of the residual stress and material microstructure
哈氏合金X增材制造:工艺参数对残余应力状态和材料微观结构的影响
- 批准号:
542550-2019 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Intergranular residual stress analysis of irradiated Zr-2.5Nb pressure tube material
Zr-2.5Nb压力管材料辐照后晶间残余应力分析
- 批准号:
531068-2018 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative Research and Development Grants
Deformation of Engineering Materials Across length and time Scales (DEMAS)
工程材料在长度和时间尺度上的变形 (DEMAS)
- 批准号:
RGPIN-2017-04969 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Intergranular residual stress analysis of irradiated Zr-2.5Nb pressure tube material**
辐照Zr-2.5Nb压力管材料的晶间残余应力分析**
- 批准号:
531068-2018 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Conference: Polymeric Materials: Science and Engineering Division Centennial Celebration at the Spring 2024 American Chemical Society Meeting
会议:高分子材料:美国化学会 2024 年春季会议科学与工程部百年庆典
- 批准号:
2415569 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Engineering Hybrid Materials with Functional Bioactivity in the GI Tract
在胃肠道中具有功能性生物活性的工程混合材料
- 批准号:
LP230100345 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Linkage Projects
Northwestern University Materials Research Science and Engineering Center
西北大学材料研究科学与工程中心
- 批准号:
2308691 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Cooperative Agreement
MRSEC: UW Molecular Engineering Materials Center
MRSEC:华盛顿大学分子工程材料中心
- 批准号:
2308979 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Cooperative Agreement
CAREER: Interfacial Engineering and Additive Printing of Flexible Thermoelectric Materials
职业:柔性热电材料的界面工程和增材印刷
- 批准号:
2238996 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
EPSRC Network for Engineering Porous Materials at Multiple Scales (EPoMM)
多尺度多孔材料工程 EPSRC 网络 (EPoMM)
- 批准号:
EP/X013065/1 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Ultrafast Action Spectroscopy of Hybrid States for Soft Optoelectronic Materials Engineering
用于软光电材料工程的杂化态超快作用光谱
- 批准号:
EP/X030822/1 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Giant modulation of the speed of nonlinear quantum phase transitions in strongly correlated materials via chemical bonding force engineering and its application to emergent neuromorphic devices
通过化学键合力工程对强相关材料中非线性量子相变速度的巨大调制及其在新兴神经形态器件中的应用
- 批准号:
23K03919 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combining Advanced Materials for Interface Engineering (CAMIE)
结合先进材料进行界面工程 (CAMIE)
- 批准号:
EP/X027074/1 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Materials Research Science and Engineering Center at UCSB
UCSB 材料研究科学与工程中心
- 批准号:
2308708 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Cooperative Agreement