Estimating turbulence and chaos using semidefinite programming
使用半定规划估计湍流和混沌
基本信息
- 批准号:RGPIN-2018-04263
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In every scientific and engineering discipline there are countless systems whose behavior is accurately modeled by differential equations. Usually the solutions to these equations are too complicated to be found exactly. A particularly fundamental yet challenging example is fluid turbulenceflow of a liquid or gas with intricate structure in space and time. When faced with differential equations governing such systems, one option is to seek a precise approximation of a single solution. This requires a lot of computation, often more than is possible even with a supercomputer. Another option is to infer properties of solutions by mathematical analysis without finding any particular solutions. This latter approach can produce numerous kinds of mathematical statements about solutions, but often they are too weak or imprecise to be useful. In a sense, the former approach uses too much information from the governing equations, while the latter approach uses too little. My research program lies in between: seeking statements about solutions, rather than the solutions themselves, but doing so with computer assistance. The resulting methods compromise between precision and computational cost in a controllable way: more computation affords more precision.
The methods I am developing all rely on constructing functions that satisfy prescribed constraints. When such a function can be found, it implies a mathematical statement about solutions to the differential equations being studied. One type of statement constructed in this way, for instance, is a limit on the minimum or maximum value of a chosen quantity. Many of the constraints that are imposed require certain polynomial expressions to be equal to sums of squares of other polynomials. Such constraints are useful because they can be reformulated as semidefinite programsa type of convex optimization problem for which numerical solutions can be efficiently computed. In this way, solving semidefinite programs gives statements about solutions to differential equations.
The goal of this proposal is twofold: to further improve methods based on semidefinite programming, and to use them to answer open questions about several fundamental models of fluid mechanics. Understanding of fluid turbulence in such systems helps inform the modeling of turbulence in aerodynamic and hydrodynamic engineering, atmospheric science, physical oceanography, and astrophysics. Moreover, researchers in many disciplines are interested in models governed by equations simpler than those governing fluids, so any methods that succeed for our purposes will be broadly useful well beyond fluid mechanics.
在每一个科学和工程学科中,都有无数的系统,它们的行为可以用微分方程精确地建模。通常这些方程的解太复杂而不能精确地求出。一个特别基本而又具有挑战性的例子是流体的连续性,即具有复杂时空结构的液体或气体的流动。当面对控制这类系统的微分方程时,一种选择是寻求单一解的精确近似。这需要大量的计算,甚至超过了超级计算机的计算能力。另一种选择是通过数学分析来推断解的性质,而不找到任何特定的解。后一种方法可以产生关于解的许多种数学陈述,但它们往往太弱或不精确而没有用处。从某种意义上说,前一种方法使用了来自控制方程的太多信息,而后一种方法使用的太少。我的研究计划介于两者之间:寻求关于解决方案的陈述,而不是解决方案本身,但这样做需要计算机的帮助。由此产生的方法在精度和计算成本之间以可控的方式进行折衷:更多的计算提供更高的精度。
我正在开发的方法都依赖于构造满足指定约束的函数。当这样一个函数可以找到,它意味着一个数学陈述的解决方案的微分方程正在研究。例如,以这种方式构造的一种语句是对所选数量的最小值或最大值的限制。所施加的许多约束要求某些多项式表达式等于其他多项式的平方和。这样的约束是有用的,因为它们可以被重新表述为半定规划一类凸优化问题,可以有效地计算数值解。这样,解半定规划给出了关于微分方程解的陈述。
该提案的目标是双重的:进一步改进基于半定规划的方法,并使用它们来回答有关流体力学几个基本模型的开放问题。对这种系统中流体湍流的理解有助于为空气动力学和流体动力学工程、大气科学、物理海洋学和天体物理学中的湍流建模提供信息。此外,许多学科的研究人员都对由比流体更简单的方程所控制的模型感兴趣,因此任何成功实现我们目的的方法都将在流体力学之外广泛使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Goluskin, David其他文献
Steady Rayleigh–Bénard convection between stress-free boundaries
无应力边界之间的稳定瑞利-贝纳德对流
- DOI:
10.1017/jfm.2020.812 - 发表时间:
2020 - 期刊:
- 影响因子:3.7
- 作者:
Wen, Baole;Goluskin, David;LeDuc, Matthew;Chini, Gregory P.;Doering, Charles R. - 通讯作者:
Doering, Charles R.
Heat transport bounds for a truncated model of Rayleigh–Bénard convection via polynomial optimization
通过多项式优化计算瑞利-伯纳德对流截断模型的热传输边界
- DOI:
10.1016/j.physd.2020.132748 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Olson, Matthew L.;Goluskin, David;Schultz, William W.;Doering, Charles R. - 通讯作者:
Doering, Charles R.
Goluskin, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Goluskin, David', 18)}}的其他基金
Estimating turbulence and chaos using semidefinite programming
使用半定规划估计湍流和混沌
- 批准号:
RGPIN-2018-04263 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Estimating turbulence and chaos using semidefinite programming
使用半定规划估计湍流和混沌
- 批准号:
RGPIN-2018-04263 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Estimating turbulence and chaos using semidefinite programming
使用半定规划估计湍流和混沌
- 批准号:
522657-2018 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Estimating turbulence and chaos using semidefinite programming
使用半定规划估计湍流和混沌
- 批准号:
RGPIN-2018-04263 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Estimating turbulence and chaos using semidefinite programming
使用半定规划估计湍流和混沌
- 批准号:
DGECR-2018-00371 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Launch Supplement
Estimating turbulence and chaos using semidefinite programming
使用半定规划估计湍流和混沌
- 批准号:
RGPIN-2018-04263 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Estimating turbulence and chaos using semidefinite programming
使用半定规划估计湍流和混沌
- 批准号:
522657-2018 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
流体湍流运动的相关数学分析
- 批准号:10971174
- 批准年份:2009
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Coherent Structure, Chaos, and Turbulence in Fluid Mechanics
流体力学中的相干结构、混沌和湍流
- 批准号:
2348453 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Estimating turbulence and chaos using semidefinite programming
使用半定规划估计湍流和混沌
- 批准号:
RGPIN-2018-04263 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Topics in theoretical atmospheric and astrophysics, fluid turbulence and chaos theory.
理论大气和天体物理学、流体湍流和混沌理论的主题。
- 批准号:
2645966 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Studentship
Coherent Structure, Chaos, and Turbulence in Fluid Mechanics
流体力学中的相干结构、混沌和湍流
- 批准号:
2108633 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Estimating turbulence and chaos using semidefinite programming
使用半定规划估计湍流和混沌
- 批准号:
RGPIN-2018-04263 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Estimating turbulence and chaos using semidefinite programming
使用半定规划估计湍流和混沌
- 批准号:
522657-2018 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Intermittency due to hetero-chaotic property and its inference
异混沌性质引起的间歇性及其推论
- 批准号:
19KK0067 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Estimating turbulence and chaos using semidefinite programming
使用半定规划估计湍流和混沌
- 批准号:
RGPIN-2018-04263 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
RII Track-4: Finding Order in Chaos: a Systematic Approach to Turbulence Control for Drag Reduction
RII Track-4:在混沌中寻找秩序:减少阻力的湍流控制的系统方法
- 批准号:
1832976 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Estimating turbulence and chaos using semidefinite programming
使用半定规划估计湍流和混沌
- 批准号:
DGECR-2018-00371 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Launch Supplement