Integrated Models of Magnetic Fields and Gas Kinematics in Molecular Clouds

分子云中磁场和气体运动学的集成模型

基本信息

  • 批准号:
    RGPIN-2017-05930
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Molecular clouds are magnetized, turbulent, self-gravitating structures, and the seat of star formation in our Galaxy. Star formation occurs on small scales (~0.1 pc), in dense cores, where gravity overcomes turbulence and outward magnetic forces. Magneto-centrifugal forces drive a pair of jets, which sweep up surrounding gas into a pair of bipolar molecular outflows. Self-gravity, outflows, and magnetic fields are strongly coupled in star formation. An integrated data-driven modelling approach, which takes into account these components simultaneously, will provide a clear picture of star forming regions. My HQP and I have developed a software package called PolCat, which uses a novel method to search an enormous space of potential density/magnetic field configurations, to automatically find those that best fit sub-millimetre polarization and intensity maps. Our models are often degenerate, but we easily rule out field geometries that cannot explain the data, and find geometries that work. PolCat models are triaxial and do not assume detailed equilibrium. However, we will use the tensor virial theorem to reject core models that are far from equilibrium along any principal axis, thus providing tighter model constraints. We will also develop a complementary method, based on the self-consistent field method of MHD, to rapidly calculate axisymmetric equilibrium models of rotating, magnetized, self-gravitating cores. The most important extension to PolCat will be a new component to model molecular outflows and their CO (carbon monoxide) line emission. My HPQ and I will develop integrated three-dimensional modelling methods, built upon techniques developed by my group, to generate and constrain models of magnetized star-forming cores and their outflows using observational data. We will explore the relationship between a core's magnetic field and the structure and orientation of outflows by applying our models to data from the BISTRO survey, which uses the new POL-2 polarimeter at the James Clerk Maxwell Telescope. A related line of inquiry will investigate the recently discovered phenomenon of molecular tornadoes, which are pressure-bound, rotating, helically-wound molecular filaments near the Galactic Centre. It is believed that their striking helical structure arises from the magnetohydrodynamic instability of a twisted magnetic tube, which is wrapped up by a torsional Alfven wave propagating along the filament. My HQP and I will develop a comprehensive, observationally constrained theory of molecular tornadoes and their stability, which will explain their unusual morphology. We will predict submillimetre polarization maps due to these objects, for comparison with future observations. The overarching goal of this research program is to develop new models and computational tools leading to an improved understanding of magnetic fields in molecular clouds and star formation.
分子云是磁化的、湍流的、自引力的结构,是我们银河系中星星形成的所在地。 星星的形成发生在小尺度(~0.1 pc),在致密的核心,重力克服湍流和向外的磁力。 磁离心力驱动一对射流,将周围的气体扫入一对双极分子外流。 在星星的形成过程中,自引力、外流和磁场是强耦合的。 一个综合的数据驱动的建模方法,同时考虑到这些组成部分,将提供一个清晰的星星形成区域的图片。 我和我的HQP开发了一个名为PolCat的软件包,它使用一种新颖的方法来搜索潜在密度/磁场配置的巨大空间,以自动找到最适合亚毫米偏振和强度图的那些。 我们的模型通常是退化的,但我们很容易排除无法解释数据的场几何,并找到有效的几何。 PolCat模型是三轴的,不假设详细的平衡。 然而,我们将使用张量维里定理拒绝远离平衡的核心模型,沿着任何主轴,从而提供更严格的模型约束。 我们也将发展一种互补的方法,基于MHD的自洽场方法,来快速计算旋转、磁化、自引力磁芯的轴对称平衡模型。 PolCat最重要的扩展将是一个新的组件,用于模拟分子流出及其CO(一氧化碳)线排放。我的HPQ和我将开发集成的三维建模方法,建立在我的团队开发的技术基础上,使用观测数据生成和约束磁化恒星形成核心及其流出物的模型。 我们将探讨核心的磁场和结构和方向的外流应用我们的模型从BISTRO调查,它使用新的POL-2偏振计在詹姆斯克拉克麦克斯韦望远镜的数据之间的关系。 一个相关的调查将调查最近发现的分子龙卷风现象,这是压力约束,旋转,螺旋缠绕的分子细丝附近的银河系中心。 据信,它们引人注目的螺旋结构产生于扭曲的磁管的磁流体动力学不稳定性,该磁管被沿丝沿着传播的扭转阿尔芬波包裹。 我和我的HQP将开发一个全面的,观测约束理论的分子龙卷风和他们的稳定性,这将解释他们不寻常的形态。 我们将预测由于这些物体的亚毫米极化图,与未来的观测进行比较。 这项研究计划的首要目标是开发新的模型和计算工具,从而提高对分子云和星星形成中磁场的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fiege, Jason其他文献

PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning
  • DOI:
    10.1118/1.3615622
  • 发表时间:
    2011-09-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Fiege, Jason;McCurdy, Boyd;Cull, Andrew
  • 通讯作者:
    Cull, Andrew

Fiege, Jason的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fiege, Jason', 18)}}的其他基金

Integrated Models of Magnetic Fields and Gas Kinematics in Molecular Clouds
分子云中磁场和气体运动学的集成模型
  • 批准号:
    RGPIN-2017-05930
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated Models of Magnetic Fields and Gas Kinematics in Molecular Clouds
分子云中磁场和气体运动学的集成模型
  • 批准号:
    RGPIN-2017-05930
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated Models of Magnetic Fields and Gas Kinematics in Molecular Clouds
分子云中磁场和气体运动学的集成模型
  • 批准号:
    RGPIN-2017-05930
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated Models of Magnetic Fields and Gas Kinematics in Molecular Clouds
分子云中磁场和气体运动学的集成模型
  • 批准号:
    RGPIN-2017-05930
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling of magnetized star forming cores and gravitational lenses
磁化恒星形成核心和引力透镜的建模
  • 批准号:
    312217-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling of magnetized star forming cores and gravitational lenses
磁化恒星形成核心和引力透镜的建模
  • 批准号:
    312217-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling of magnetized star forming cores and gravitational lenses
磁化恒星形成核心和引力透镜的建模
  • 批准号:
    312217-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling of magnetized star forming cores and gravitational lenses
磁化恒星形成核心和引力透镜的建模
  • 批准号:
    312217-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of an advanced genetic algorithm to gravitational lens systems, galactic HI disks and star formation
先进遗传算法在引力透镜系统、银河 HI 盘和恒星形成中的应用
  • 批准号:
    312217-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of an advanced genetic algorithm to gravitational lens systems, galactic HI disks and star formation
先进遗传算法在引力透镜系统、银河 HI 盘和恒星形成中的应用
  • 批准号:
    312217-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
  • 批准号:
    2344664
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
SHINE: Understanding the Relationships of Photospheric Vector Magnetic Field Parameters in Solar Flare Occurrences using Graph-based Machine Learning Models
SHINE:使用基于图的机器学习模型了解太阳耀斑发生时光球矢量磁场参数的关系
  • 批准号:
    2301397
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Machine Learning for Heterogeneous Brain Magnetic Resonance Imaging: Bridging the Gap to Generalizable Models
异质脑磁共振成像的机器学习:弥合可推广模型的差距
  • 批准号:
    DGECR-2022-00084
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Launch Supplement
Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging
用于功能磁共振成像的个性化时空血流动力学响应模型
  • 批准号:
    10705163
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
Machine Learning for Heterogeneous Brain Magnetic Resonance Imaging: Bridging the Gap to Generalizable Models
异质脑磁共振成像的机器学习:弥合可推广模型的差距
  • 批准号:
    RGPIN-2022-03127
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging
用于功能磁共振成像的个性化时空血流动力学响应模型
  • 批准号:
    10585582
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
Creation of Artificial Systems Consisting of Flavin and Amino Acid Units as Models for Protein-based Magnetic Sensor
创建由黄素和氨基酸单元组成的人工系统作为基于蛋白质的磁传感器的模型
  • 批准号:
    22K05053
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Low-rank and sparsity-based models in Magnetic Resonance Imaging (B03)
磁共振成像中的低秩和稀疏模型(B03)
  • 批准号:
    456843331
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Collaborative Research Centres
Integrated Models of Magnetic Fields and Gas Kinematics in Molecular Clouds
分子云中磁场和气体运动学的集成模型
  • 批准号:
    RGPIN-2017-05930
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Enabling Multi-Scale Studies of Magnetic Reconnection with Interpretable Data-Driven Models
合作研究:通过可解释的数据驱动模型实现磁重联的多尺度研究
  • 批准号:
    2108087
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了