Machine Learning for Heterogeneous Brain Magnetic Resonance Imaging: Bridging the Gap to Generalizable Models
异质脑磁共振成像的机器学习:弥合可推广模型的差距
基本信息
- 批准号:RGPIN-2022-03127
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Magnetic resonance (MR) imaging has become a key technology for brain imaging, resulting in massive databases, rapidly increasing the need for big data analytics, robust pooling, and harmonization, especially for data acquired across diverse cohorts. A barrier to the success of these techniques is the inherent variation between image acquisition protocols and different equipment, resulting in a lack of reproducible results. It has been shown that even when care is taken to standardize acquisitions, changes in hardware, software, or protocol design can lead to differences in quantitative results and loss of consistency. As a result, the quantitative utility of MR in multi-site or long-term studies is dramatically impacted. Machine learning (ML) has been extensively investigated for MR imaging analysis with multiple goals, such as quantitative analysis of structures or abnormalities and progress evaluation over time. Yet only a limited number of applications are now in use outside the research environment. A key reason for that is the poor generalizability of the models to data from different sources or acquisition domains. In the early 2010s, MR scanners with a magnetic field strength of 1.5 T were largely used. These machines have been replaced with 3 T MR scanners in the last years, not only for research but also for routine exams. However, tools developed for studies using 1.5 T images show poor generalization capability, performing poorly in 3 T MR images. Developing new methods to handle this diverse MR imaging data is crucial for achieving accurate models and broadening their usage. My long-term research program goal is to tackle the current limitations of the broader use of ML for medical imaging, focusing on the challenges of conducting large and multi-site studies. In my first NSERC Discovery Grant, I will develop data harmonization and domain adaptation strategies of ML models that allow generalization from one dataset to another, avoiding domain-specific decision-making, using specific classification and segmentation tasks on healthy control participants and patients on brain MR imaging as proof of concepts. ML models with consistent results across different imaging types, different groups of subjects (varying age ranges, sex, and pathology), and acquisition parameters are more reliable and allow broader usage. I anticipate a significant improvement in the generalization capability of ML tools developed for brain MR imaging applications. My findings will significantly impact the research area by allowing the usage of such models in larger, heterogeneous datasets and best practices when translating learning from one application to another using the proposed data harmonization and domain adaptation strategies. While my short-term goal is to work with MR imaging, the proposed strategies would be substantial for translation to other applications for other medical images and other computer vision applications.
磁共振(MR)成像已成为脑成像的关键技术,产生了大量的数据库,迅速增加了对大数据分析、强大的池化和协调的需求,特别是对于跨不同队列获取的数据。这些技术成功的一个障碍是图像采集协议和不同设备之间的固有差异,导致缺乏可重复的结果。研究表明,即使在采集标准化过程中,硬件、软件或方案设计的变化也会导致定量结果的差异和一致性的丧失。因此,MR在多中心或长期研究中的定量效用受到极大影响。机器学习(ML)已被广泛研究用于具有多个目标的MR成像分析,例如结构或异常的定量分析以及随时间推移的进展评估。然而,目前只有有限数量的应用程序在研究环境之外使用。一个关键原因是模型对不同来源或采集领域的数据的通用性差。在2010年代初,磁场强度为1.5 T的MR扫描仪被大量使用。在过去的几年里,这些机器已经被3T MR扫描仪所取代,不仅用于研究,而且用于常规检查。然而,为使用1.5 T图像的研究开发的工具显示出较差的泛化能力,在3 T MR图像中表现不佳。开发新的方法来处理这种多样化的MR成像数据对于实现准确的模型和扩大其用途至关重要。我的长期研究计划目标是解决目前ML在医学成像中广泛使用的局限性,重点关注进行大型和多站点研究的挑战。在我的第一个NSERC发现补助金中,我将开发ML模型的数据协调和领域适应策略,允许从一个数据集到另一个数据集的泛化,避免特定领域的决策,使用健康对照参与者和脑MR成像患者的特定分类和分割任务作为概念证明。ML模型在不同成像类型、不同受试者组(不同年龄范围、性别和病理学)和采集参数之间具有一致的结果,更可靠,并允许更广泛的使用。我预计,为大脑MR成像应用开发的ML工具的泛化能力将有显着提高。我的研究结果将显著影响研究领域,允许在更大的,异构的数据集和最佳实践中使用这些模型,当使用拟议的数据协调和域适应策略将学习从一个应用程序转换到另一个应用程序时。虽然我的短期目标是与MR成像合作,但所提出的策略对于其他医学图像和其他计算机视觉应用的其他应用来说将是实质性的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bento, Mariana其他文献
Harmonization of multi-scanner in vivo magnetic resonance spectroscopy: ENIGMA consortium task group considerations.
- DOI:
10.3389/fneur.2022.1045678 - 发表时间:
2022 - 期刊:
- 影响因子:3.4
- 作者:
Harris, Ashley D.;Amiri, Houshang;Bento, Mariana;Cohen, Ronald;Ching, Christopher R. K.;Cudalbu, Christina;Dennis, Emily L.;Doose, Arne;Ehrlich, Stefan;Kirov, Ivan I.;Mekle, Ralf;Oeltzschner, Georg;Porges, Eric;Souza, Roberto;Tam, Friederike I.;Taylor, Brian;Thompson, Paul M.;Quide, Yann;Wilde, Elisabeth A.;Williamson, John;Lin, Alexander P.;Bartnik-Olson, Brenda - 通讯作者:
Bartnik-Olson, Brenda
Automatic identification of atherosclerosis subjects in a heterogeneous MR brain imaging data set
- DOI:
10.1016/j.mri.2019.06.007 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:2.5
- 作者:
Bento, Mariana;Souza, Roberto;Frayne, Richard - 通讯作者:
Frayne, Richard
Bento, Mariana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bento, Mariana', 18)}}的其他基金
Machine Learning for Heterogeneous Brain Magnetic Resonance Imaging: Bridging the Gap to Generalizable Models
异质脑磁共振成像的机器学习:弥合可推广模型的差距
- 批准号:
DGECR-2022-00084 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
- 批准号:
2340249 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
- 批准号:
2311632 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Federated Learning Infrastructure for Collaborative Machine Learning on Heterogeneous Environments
用于异构环境下协作机器学习的联邦学习基础设施
- 批准号:
22KJ2289 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for JSPS Fellows
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10601180 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Machine Learning for Heterogeneous Brain Magnetic Resonance Imaging: Bridging the Gap to Generalizable Models
异质脑磁共振成像的机器学习:弥合可推广模型的差距
- 批准号:
DGECR-2022-00084 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
- 批准号:
2306125 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10665804 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
MRI: Development of Heterogeneous Edge Computing Platform for Real-Time Scientific Machine Learning
MRI:开发用于实时科学机器学习的异构边缘计算平台
- 批准号:
2215789 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Heterogeneous data fusion and machine learning for image understanding in lung cancer
用于肺癌图像理解的异构数据融合和机器学习
- 批准号:
RGPIN-2020-06498 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
EAGER: ADAPT: Hypotheses Generation in Heterogeneous Catalysis using Causal Inference and Machine Learning
EAGER:ADAPT:使用因果推理和机器学习在异质催化中生成假设
- 批准号:
2231174 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant














{{item.name}}会员




