Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging

用于功能磁共振成像的个性化时空血流动力学响应模型

基本信息

  • 批准号:
    10705163
  • 负责人:
  • 金额:
    $ 76.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

Functional Magnetic Resonance Imaging (fMRI) shows great promise in characterizing brain circuits and networks related to human mental function and identifying pathophysiological changes underlying mental health disorders, healthy and pathological aging, substance misuse, and beyond. Great strides are being made in many areas, but the vast majority of fMRI research relies on the simplifying assumption of a canonical (or highly constrained) hemodynamic response function (HRF) that is substantially inaccurate. The HRF varies across brain regions, individuals, and age, but estimating it with sufficient accuracy and precision is problematic in small to medium-sized studies. As a result, over 95% of fMRI studies use a canonical HRF of fixed form. This results in substantial bias, power loss, and confounding. These problems apply to both task-based and connectivity studies, which rely implicitly on the assumption of a constant HRF across regions and individuals. In response to the “Notice of Special Interest (NOSI) regarding the Use of Human Connectome [HCP] Data for Secondary Analysis”, propose to use the Lifespan aged 5-100) combined with advanced statistical modeling t we HCP data (n=~3,600 high-quality datasets from people o address this issue. In Aim 1, we will contrast commonly used HRF models across the lifespan based on reliability and ability to ‘decode’ task state and phenotypic variables (e.g., cognitive function and mood). We develop novel methods for extracting meaningful phenotypic information from HRF shape and population inference, and develop robust software for best-in-class models. In Aim 2, we integrate best-in-class HRF models into a novel Gaussian process model and use it derive a demographic-specific, spatiotemporal HRF atlas, providing customized HRFs based on readily measurable characteristics (age, sex, and body- mass index) and brain region. In Aim 3, we use the HRF atlas to deconvolve rs-fMRI data and construct an HRF-corrected connectome map. We validate the HRF models, atlas, and connectome on two independent HCP Disease Connectomes and the CAM- CAN dataset (n=~700), and share the atlas, connectome, and software integrations with the research community. The development of these large-sample models will provide more accurate and precise estimates of task-related fMRI activity and connectivity in basic and clinical studies of mental health, aging, substance use, and beyond.
功能磁共振成像(fMRI)在表征方面显示出巨大的希望

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Lindquist其他文献

Martin Lindquist的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Lindquist', 18)}}的其他基金

Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging
用于功能磁共振成像的个性化时空血流动力学响应模型
  • 批准号:
    10585582
  • 财政年份:
    2022
  • 资助金额:
    $ 76.51万
  • 项目类别:
Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
  • 批准号:
    10468273
  • 财政年份:
    2019
  • 资助金额:
    $ 76.51万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    9812377
  • 财政年份:
    2019
  • 资助金额:
    $ 76.51万
  • 项目类别:
Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
  • 批准号:
    10863408
  • 财政年份:
    2019
  • 资助金额:
    $ 76.51万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10863409
  • 财政年份:
    2019
  • 资助金额:
    $ 76.51万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10918383
  • 财政年份:
    2019
  • 资助金额:
    $ 76.51万
  • 项目类别:
Project-001
项目-001
  • 批准号:
    10891960
  • 财政年份:
    2019
  • 资助金额:
    $ 76.51万
  • 项目类别:
Project-002
项目-002
  • 批准号:
    10892355
  • 财政年份:
    2019
  • 资助金额:
    $ 76.51万
  • 项目类别:
Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
  • 批准号:
    9812376
  • 财政年份:
    2019
  • 资助金额:
    $ 76.51万
  • 项目类别:
Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
  • 批准号:
    10789239
  • 财政年份:
    2019
  • 资助金额:
    $ 76.51万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 76.51万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.51万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 76.51万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.51万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 76.51万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.51万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 76.51万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 76.51万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 76.51万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.51万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了