Deep Learning Hardware: Enabling the next wave of applications and innovation

深度学习硬件:实现下一波应用和创新浪潮

基本信息

  • 批准号:
    RGPIN-2017-06064
  • 负责人:
  • 金额:
    $ 3.42万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Over the past few years we have been witnessing unprecedented advances on what computing can do for us. It is suddenly possible to reliably talk to our phones, or to look up information. Online translation between languages have become very reliable and useful. There are vehicles that can drive themselves with very little human supervision, and there are constant news stories about how computers are being put to test to help with many difficult tasks such as medical diagnosis. The one technology behind all these innovations is Deep Learning, a class of computing algorithms that allow computers to learn on their own given enough examples. The core technology behind Deep Learning has been around for decades. However, it is only recently that access to vast amounts of online information became available and computing hardware performance has reached levels that allowed the first practical applications of Deep Learning. While existing hardware was sufficient for these first breakthroughs in Deep Learning, it is not capable enough to sustain innovation. Even worse, while in the past computing hardware performance was improving predictably over the years due to advances in semiconductor technology, this is no longer possible due to fundamental challenges in this technology. One way to deliver the hardware performance increases that will enable further innovation in Deep Learning is to build specialized hardware. This five year research program will investigate such specialized hardware designs enabling Deep Learning researchers to further innovate and to bring us closer to truly intelligent machines. The core concept behind our specialized hardware is that it takes advantage of the values calculated upon during Deep Learning processing. The result will be a programmable, yet specialized architecture that will deliver at least three orders of performance improvements over commodity solutions and that can be tailored to various use scenarios from large scale installations such as data centers to mobile and embedded devices.
在过去的几年里,我们目睹了计算机能为我们做什么的前所未有的进步。突然之间,我们可以可靠地与手机交谈,或者查找信息。语言之间的在线翻译已经变得非常可靠和有用。有些车辆可以在很少有人监督的情况下自动驾驶,并且不断有关于计算机如何进行测试以帮助完成许多困难任务的新闻报道,例如医疗诊断。所有这些创新背后的一项技术是深度学习,这是一类计算算法,允许计算机在足够的例子中自行学习。深度学习背后的核心技术已经存在了几十年。然而,直到最近,人们才可以访问大量的在线信息,计算硬件的性能也达到了允许深度学习首次实际应用的水平。虽然现有的硬件足以实现深度学习的这些首次突破,但它不足以维持创新。更糟糕的是,虽然过去由于半导体技术的进步,计算硬件性能多年来一直在可预测地提高,但由于该技术的根本挑战,这不再可能。提高硬件性能的一种方法是构建专门的硬件,这将使深度学习能够进一步创新。这个为期五年的研究计划将研究这种专门的硬件设计,使深度学习研究人员能够进一步创新,并使我们更接近真正的智能机器。我们专用硬件背后的核心概念是,它利用了深度学习处理过程中计算的值。其结果将是一个可编程的,但专门的架构,将提供至少三个订单的性能改进比商品解决方案,并可以定制各种使用场景,从大规模安装,如数据中心到移动的和嵌入式设备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moshovos, Andreas其他文献

Value-Based Deep-Learning Acceleration
  • DOI:
    10.1109/mm.2018.112130309
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Moshovos, Andreas;Albericio, Jorge;Jerger, Natalie Enright
  • 通讯作者:
    Jerger, Natalie Enright

Moshovos, Andreas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moshovos, Andreas', 18)}}的其他基金

Deep Learning Hardware: Enabling the next wave of applications and innovation
深度学习硬件:实现下一波应用和创新浪潮
  • 批准号:
    RGPIN-2017-06064
  • 财政年份:
    2021
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC COHESA: Computing Hardware for Emerging Intelligent Sensory Applications
NSERC COHESA:用于新兴智能传感应用的计算硬件
  • 批准号:
    485577-2015
  • 财政年份:
    2021
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Strategic Network Grants Program
A Business / Market Opportunity Assessment for Hardware Concepts & Device Designs for Brain-Machine Interfacing
硬件概念的商业/市场机会评估
  • 批准号:
    571002-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Idea to Innovation
NSERC COHESA: Computing Hardware for Emerging Intelligent Sensory Applications
NSERC COHESA:用于新兴智能传感应用的计算硬件
  • 批准号:
    485577-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Strategic Network Grants Program
Deep Learning Hardware: Enabling the next wave of applications and innovation
深度学习硬件:实现下一波应用和创新浪潮
  • 批准号:
    DGDND-2017-00010
  • 财政年份:
    2019
  • 资助金额:
    $ 3.42万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
NSERC COHESA: Computing Hardware for Emerging Intelligent Sensory Applications
NSERC COHESA:用于新兴智能传感应用的计算硬件
  • 批准号:
    485577-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Strategic Network Grants Program
Deep Learning Hardware: Enabling the next wave of applications and innovation
深度学习硬件:实现下一波应用和创新浪潮
  • 批准号:
    RGPIN-2017-06064
  • 财政年份:
    2019
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
A novel system architecture for online operational analytics
用于在线运营分析的新颖系统架构
  • 批准号:
    463355-2014
  • 财政年份:
    2018
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Strategic Projects - Group
Deep Learning Hardware: Enabling the next wave of applications and innovation
深度学习硬件:实现下一波应用和创新浪潮
  • 批准号:
    RGPIN-2017-06064
  • 财政年份:
    2018
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC COHESA: Computing Hardware for Emerging Intelligent Sensory Applications
NSERC COHESA:用于新兴智能传感应用的计算硬件
  • 批准号:
    485577-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Strategic Network Grants Program

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
  • 批准号:
    2334628
  • 财政年份:
    2024
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Standard Grant
CAREER: Protecting Deep Learning Systems against Hardware-Oriented Vulnerabilities
职业:保护深度学习系统免受面向硬件的漏洞的影响
  • 批准号:
    2426299
  • 财政年份:
    2024
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Continuing Grant
Security Evaluation Method Against Deep-Learning-Based Side-Channel Attacks Exploiting Physical Behavior of Cryptographic Hardware
针对利用密码硬件物理行为的基于深度学习的侧信道攻击的安全评估方法
  • 批准号:
    23K11102
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
TruDetect: Trustworthy Deep-Learning based Hardware Trojan Detection
TruDetect:值得信赖的基于深度学习的硬件木马检测
  • 批准号:
    EP/X036960/1
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Research Grant
POSE: Phase II: Building an Open-Source Ecosystem for Deep-Learning Hardware-Software Co-Design
POSE:第二阶段:构建深度学习软硬件协同设计的开源生态系统
  • 批准号:
    2303735
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Standard Grant
SHF: Small: Software and Hardware Support for Robust Deep Learning
SHF:小型:强大深度学习的软件和硬件支持
  • 批准号:
    2301334
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Standard Grant
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
Collaborative Research: Hardware-Aware Matrix Computations for Deep Learning Applications
协作研究:深度学习应用的硬件感知矩阵计算
  • 批准号:
    2247014
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Hardware-Aware Matrix Computations for Deep Learning Applications
协作研究:深度学习应用的硬件感知矩阵计算
  • 批准号:
    2247015
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Standard Grant
CRII: CNS: Design and System Technology Co-optimization Towards Addressing the Memory Bottleneck Problem of Deep Learning Hardware
CRII:CNS:设计和系统技术协同优化解决深度学习硬件的内存瓶颈问题
  • 批准号:
    2153394
  • 财政年份:
    2022
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了