Methods and Tools for Active Adapation in Serious Games Based on a Rich User Model

基于丰富用户模型的严肃游戏主动适配方法与工具

基本信息

  • 批准号:
    RGPIN-2017-06575
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Although the effectiveness of Intelligent Tutoring Systems has been clearly demonstrated, their widespread use has not been a success. The lacking of learning environments that keep students motivated and engaged is one of the major causes of this failure. Serious games provide the playful side, to overcome the lack of motivation but they should adapt to the player to increase the learning gain as well as gameplay experience. However, the rationale, conditions and effects of adaptability remain poorly explored and inadequately assessed in this context. The aim of my research program for the next five years is to investigate innovative methods and design methodology that can make serious games cognitively, emotionally, and socially more adaptive for increased learning gain and gameplay experience. The research program has four specific objectives: 1. To investigate and determine the main features in play for an active adaptation in serious games 2. To explore and develop novel methods for extracting new features from multi-modal user behaviour data 3. To investigate new adaptation models that could accurately predict learner-player behaviour and respond to it by using appropriate adaptation measures; 4. To investigate a methodology for designing highly adaptive serious games with optimal learning gain. Two main hypotheses will guide our studies: 1) A holistic modelling approach that considers all of the learner-player's many facets, including skills, affects, social behaviours (leading to a Rich Learner Player Model RPLM) is the basis for a successful adaptation of a serious game in terms of its educational effectiveness; 2) Mining multi-modal and multi-source interaction data collected during the game will require adapting or improving existing data mining techniques or inventing more appropriate ones. The RLPM hypothesis will be refined by exploring factors associated with every of its aspects. Behaviour multi-modal data mining techniques and appropriated machine learning approaches will be investigated in order to build an accurate adaptation model, including a user behaviour prediction engine based on interaction data collected during the game. The results of this research will open the door to more informed, adaptive and intelligent serious games, with a more accurate prediction model of the learner-player's behaviour. This new generation of games will anticipate the player's actions as well as reactions and will be able to generate positive behaviours and emotions and inhibit those deviants or negatives for pedagogical purposes. Adapting the game based on our RLPM will lead to a more relevant gameplay experience and optimized pedagogical strategies. In addition to the contribution to the advancement of knowledge in serious games, educational data mining and ITS research fields, the well-established game in
虽然智能辅导系统的有效性已经得到了明确的证明,但它们的广泛使用并不成功。缺乏保持学生积极性和参与性的学习环境是导致这种失败的主要原因之一。严肃的游戏提供了好玩的一面,以克服缺乏动力,但他们应该适应玩家,以增加学习收益以及游戏体验。然而,在这方面,对适应性的理由、条件和影响的探讨仍然很少,评估也不够。 我未来五年研究计划的目标是研究创新方法和设计方法,使严肃游戏在认知、情感和社交方面更具适应性,以增加学习收获和游戏体验。该研究计划有四个具体目标: 1.调查并确定游戏中的主要特征,以便在严肃游戏中积极适应 2.探索和开发从多模式用户行为数据中提取新特征的新方法 3.研究新的适应模式,以准确地预测学习者-运动员的行为,并采用适当的适应措施加以应对; 4.研究一种设计具有最佳学习增益的高度适应性严肃游戏的方法。 两个主要假设将指导我们的研究: 1)一个全面的建模方法,考虑到所有的学习者-玩家的许多方面,包括技能,影响,社会行为(导致丰富的学习者玩家模型RPLM)是一个成功的基础上改编的一个严重的游戏在其教育效果; 2)挖掘在游戏过程中收集的多模态和多源交互数据将需要调整或改进现有的数据挖掘技术,或者发明更合适的技术。 RLPM假说将通过探索与其各个方面相关的因素来完善。将研究行为多模态数据挖掘技术和适当的机器学习方法,以建立一个准确的适应模型,包括基于游戏期间收集的交互数据的用户行为预测引擎。 这项研究的结果将为更明智,适应性和智能的严肃游戏打开大门,并为学习者-玩家的行为提供更准确的预测模型。新一代的游戏将预测玩家的行为和反应,并能够产生积极的行为和情绪,并抑制这些偏差或消极的教育目的。根据RLPM改编游戏将带来更相关的游戏体验和优化的教学策略。除了对严肃游戏、教育数据挖掘和ITS研究领域的知识进步做出贡献外,

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nkambou, Roger其他文献

Mining Partially-Ordered Sequential Rules Common to Multiple Sequences
Evaluating Spatial Representations and Skills in a Simulator-Based Tutoring System
A Survey of High Utility Itemset Mining
Infusing Expert Knowledge Into a Deep Neural Network Using Attention Mechanism for Personalized Learning Environments.
Building Domain Ontologies from Text for Educational Purposes

Nkambou, Roger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nkambou, Roger', 18)}}的其他基金

Methods and Tools for Active Adapation in Serious Games Based on a Rich User Model
基于丰富用户模型的严肃游戏主动适配方法与工具
  • 批准号:
    RGPIN-2017-06575
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Methods and Tools for Active Adapation in Serious Games Based on a Rich User Model
基于丰富用户模型的严肃游戏主动适配方法与工具
  • 批准号:
    RGPIN-2017-06575
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Methods and Tools for Active Adapation in Serious Games Based on a Rich User Model
基于丰富用户模型的严肃游戏主动适配方法与工具
  • 批准号:
    RGPIN-2017-06575
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Methods and Tools for Active Adapation in Serious Games Based on a Rich User Model
基于丰富用户模型的严肃游戏主动适配方法与工具
  • 批准号:
    RGPIN-2017-06575
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Methods and Tools for Active Adapation in Serious Games Based on a Rich User Model
基于丰富用户模型的严肃游戏主动适配方法与工具
  • 批准号:
    RGPIN-2017-06575
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Domain Knowledge Modelling for Educational Purposes: Methods and Tools
用于教育目的的领域知识建模:方法和工具
  • 批准号:
    217279-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Domain Knowledge Modelling for Educational Purposes: Methods and Tools
用于教育目的的领域知识建模:方法和工具
  • 批准号:
    217279-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Domain Knowledge Modelling for Educational Purposes: Methods and Tools
用于教育目的的领域知识建模:方法和工具
  • 批准号:
    217279-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Domain Knowledge Modelling for Educational Purposes: Methods and Tools
用于教育目的的领域知识建模:方法和工具
  • 批准号:
    217279-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Domain Knowledge Modelling for Educational Purposes: Methods and Tools
用于教育目的的领域知识建模:方法和工具
  • 批准号:
    217279-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Taking the bait: exploiting new tools to capture, identify, and visualize active proteinases in osteoarthritic cartilage destruction
上钩:利用新工具捕获、识别和可视化骨关节炎软骨破坏中的活性蛋白酶
  • 批准号:
    2750011
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship
IMR: MT: Tools for Safe, Easy, and Reliable Active Global Internet Measurement
IMR:MT:用于安全、简单和可靠的主动全球互联网测量的工具
  • 批准号:
    2223360
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Methods and Tools for Active Adapation in Serious Games Based on a Rich User Model
基于丰富用户模型的严肃游戏主动适配方法与工具
  • 批准号:
    RGPIN-2017-06575
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Methods and Tools for Active Adapation in Serious Games Based on a Rich User Model
基于丰富用户模型的严肃游戏主动适配方法与工具
  • 批准号:
    RGPIN-2017-06575
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Developing new tools to investigate complex redox-active proteins
开发新工具来研究复杂的氧化还原活性蛋白
  • 批准号:
    2453516
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship
OAC Core: Small: Efficient and scalable tools for design and analysis of active matter systems
OAC 核心:小型:用于设计和分析活性物质系统的高效且可扩展的工具
  • 批准号:
    2007181
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Methods and Tools for Active Adapation in Serious Games Based on a Rich User Model
基于丰富用户模型的严肃游戏主动适配方法与工具
  • 批准号:
    RGPIN-2017-06575
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Developing New Computer Modelling Tools to Better Predict the Reactivity of Active Site Cysteines in Protein Kinases for Optimizing Anti-cancer Drugs
开发新的计算机建模工具以更好地预测蛋白激酶中活性位点半胱氨酸的反应性以优化抗癌药物
  • 批准号:
    517792-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Methods and Tools for Active Adapation in Serious Games Based on a Rich User Model
基于丰富用户模型的严肃游戏主动适配方法与工具
  • 批准号:
    RGPIN-2017-06575
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Developing New Computer Modelling Tools to Better Predict the Reactivity of Active Site Cysteines in Protein Kinases for Optimizing Anti-cancer Drugs
开发新的计算机建模工具以更好地预测蛋白激酶中活性位点半胱氨酸的反应性以优化抗癌药物
  • 批准号:
    517792-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了