Algebraic methods in quantum information
量子信息中的代数方法
基本信息
- 批准号:RGPIN-2018-03968
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum information science (QIS) is the study of information and computation, starting from a quantum-mechanical description of the physical world. On the theoretical side, we explore these concepts using mathematical models. While the questions we ask about these models come from an information science perspective, the natural mathematical language for QIS lies in the subjects of operator algebras and Lie theory. Combining these two perspectives poses unique mathematical challenges. Since QIS is still a developing field, in many cases we don't currently have a good understanding of which problems or problem instances are tractable (i.e. can be solved mathematically), and which are intractable. Broadly speaking, my interest in the mathematics of QIS lies in exploring the boundaries between tractable and intractable problems/problem instances. For instance, this might be accomplished by finding natural problems in QIS which are intractable; or identifying classes of problems or problem instances where, despite initially appearing intractable, some geometric or algebraic structure makes the problem tractable.
Non-local games provide a fertile area to explore these boundaries. In a non-local game, two players cooperate to win a simple game. Although they know the rules in advance, they are unable to communicate while the game is in progress, so they may not be able to win with probability one. Bell's famous theorem states that the players can achieve a higher winning probability than expected classically if they share an entangled quantum state. Thus, non-local games can be regarded as simple distributed tasks which can have a quantum advantage. Since Bell's discovery, non-local games have been implemented (usually under the name of Bell tests) in many experiments, and now form one of the cornerstones of the evidence for quantum mechanics. On the theory side, non-local games have been heavily studied (often under the name of Bell inequalities or Bell scenarios) in physics, mathematics, and computer science, and have many potential applications in quantum information science.
Despite being heavily studied, the fundamental mathematical questions about non-local games remain unanswered. These include:
1. How do we model a quantum strategy, i.e. a strategy with an entangled quantum state?
2. Given a game, can we compute the optimal winning probability over quantum strategies?
3. Given a game, how much entanglement is required to play optimally or near-optimally?
Recently we have been able to make some of the first progress on questions 1-3 by making a connection between non-local games and the theory of finitely-presented groups. In particular, we have been able to show that it is impossible to determine the exact optimal winning probability over quantum strategies. The goal of this research is to continue to develop this connection to get further insight into these questions.
量子信息科学(QIS)是信息和计算的研究,从物理世界的量子力学描述开始。在理论方面,我们使用数学模型来探索这些概念。虽然我们对这些模型提出的问题来自信息科学的角度,但QIS的自然数学语言在于算子代数和李理论。结合这两个观点提出了独特的数学挑战。由于QIS仍然是一个发展中的领域,在许多情况下,我们目前还没有很好地理解哪些问题或问题实例是易处理的(即可以通过数学方法解决),哪些是难以处理的。从广义上讲,我对QIS数学的兴趣在于探索易处理和难处理问题/问题实例之间的界限。例如,这可以通过在QIS中找到难以处理的自然问题来实现;或者识别问题类别或问题实例,尽管最初看起来难以处理,但某些几何或代数结构使问题易于处理。
非本地游戏为探索这些边界提供了一个肥沃的区域。在非局部博弈中,两个参与者合作赢得一个简单的博弈。虽然他们事先知道规则,但他们无法在游戏进行时进行交流,因此他们可能无法以概率1获胜。贝尔的著名定理指出,如果参与者共享一个纠缠量子态,他们可以获得比经典预期更高的获胜概率。 因此,非局部游戏可以被视为简单的分布式任务,可以具有量子优势。自从贝尔的发现以来,非定域博弈已经在许多实验中实现(通常以贝尔测试的名义),现在形成了量子力学证据的基石之一。在理论方面,非定域博弈在物理学、数学和计算机科学中得到了大量的研究(通常以贝尔不等式或贝尔场景的名义),并且在量子信息科学中有许多潜在的应用。
尽管被大量研究,关于非局部博弈的基本数学问题仍然没有答案。 其中包括:
1.我们如何模拟量子策略,即具有纠缠量子态的策略?
2.给定一个博弈,我们能计算出量子策略的最优获胜概率吗?
3.给定一个博弈,需要多少纠缠才能达到最优或接近最优?
最近,我们通过将非局部博弈与有限群理论联系起来,在问题1-3上取得了一些初步进展。特别是,我们已经能够证明,不可能确定量子策略的确切最佳获胜概率。这项研究的目标是继续发展这种联系,以进一步了解这些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Slofstra, William其他文献
Annular embeddings of permutations for arbitrary genus
- DOI:
10.1016/j.jcta.2009.11.009 - 发表时间:
2010-04-01 - 期刊:
- 影响因子:1.1
- 作者:
Goulden, I. P.;Slofstra, William - 通讯作者:
Slofstra, William
Entanglement in Non-local Games and the Hyperlinear Profile of Groups
非局域博弈中的纠缠和群的超线性特征
- DOI:
10.1007/s00023-018-0718-y - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Slofstra, William;Vidick, Thomas - 通讯作者:
Vidick, Thomas
Slofstra, William的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Slofstra, William', 18)}}的其他基金
Algebraic methods in quantum information
量子信息中的代数方法
- 批准号:
RGPIN-2018-03968 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic methods in quantum information
量子信息中的代数方法
- 批准号:
RGPIN-2018-03968 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic methods in quantum information
量子信息中的代数方法
- 批准号:
RGPIN-2018-03968 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic methods in quantum information
量子信息中的代数方法
- 批准号:
RGPIN-2018-03968 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic methods in quantum information
量子信息中的代数方法
- 批准号:
DGECR-2018-00411 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Launch Supplement
Structure in topological quantum field theories
拓扑量子场论中的结构
- 批准号:
332737-2008 - 财政年份:2009
- 资助金额:
$ 1.82万 - 项目类别:
Postgraduate Scholarships - Doctoral
Structure in topological quantum field theories
拓扑量子场论中的结构
- 批准号:
332737-2008 - 财政年份:2008
- 资助金额:
$ 1.82万 - 项目类别:
Postgraduate Scholarships - Doctoral
Geometric methods in algebraic conbinatorics
代数组合中的几何方法
- 批准号:
332737-2007 - 财政年份:2007
- 资助金额:
$ 1.82万 - 项目类别:
Postgraduate Scholarships - Master's
Geometric methods in algebraic conbinatorics
代数组合中的几何方法
- 批准号:
332737-2006 - 财政年份:2006
- 资助金额:
$ 1.82万 - 项目类别:
Postgraduate Scholarships - Master's
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Algebraic methods in quantum information
量子信息中的代数方法
- 批准号:
RGPIN-2018-03968 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic methods in quantum information
量子信息中的代数方法
- 批准号:
RGPIN-2018-03968 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebraic Methods in Topological Phases and Quantum Information
拓扑相和量子信息中的算子代数方法
- 批准号:
2435440 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Security analysis and design of post-quantum cryptography using algebraic methods
使用代数方法进行后量子密码学的安全分析和设计
- 批准号:
19K03640 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic methods in quantum information
量子信息中的代数方法
- 批准号:
RGPIN-2018-03968 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
507937-2017 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Algebraic methods in quantum information
量子信息中的代数方法
- 批准号:
RGPIN-2018-03968 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual