Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
基本信息
- 批准号:RGPIN-2017-05161
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research project is to develop techniques for reducing the amount of resources required for performing practical quantum computing. Quantum computing is a form of computing that is based on the laws of quantum physics, rather than classical physics. It has the potential to be vastly more powerful than any of the computers existing today. There are certain computational problems for which there exist efficient quantum algorithms, although no efficient classical algorithm is known. The best-known example is Shor's 1994 quantum algorithm for factoring integers into primes.
When the subject of quantum computing first emerged into the mainstream of computer science two decades ago, it was initially mostly of theoretical interest, as the development of practical quantum computers was literally decades away. However, this seems to be changing. There are now a number of government, public, and private organizations, including several in Canada, that are actively trying to build a scalable quantum computer and are making tangible progress. At the same time, it is becoming clear that, even if a scalable quantum computer can be built, the actual resources required to make it fault tolerant will be staggering - by some estimates, a computation that requires, say, a few hundred logical qubits could require hundreds of thousands of physical qubits and millions of years of computing time on the sort of hardware that is considered realistic in the near term.
With this, practical considerations are suddenly thrust into the foreground of quantum computing. The resource reductions required to make quantum computing feasible can potentially come from a variety of places, for example, better error correction schemes, improved protocols for components such as state distillation, improved algorithms, and improved compilation techniques. My research is primarily focused in the latter area, and specifically on improved methods for unitary approximation and the optimization of logical quantum circuits.
该研究项目的目的是开发减少执行实际量子计算所需资源量的技术。量子计算是一种基于量子物理定律的计算形式,而不是经典物理。它有可能比今天存在的任何计算机都强大得多。对于某些计算问题,存在有效的量子算法,尽管没有已知的有效的经典算法。最著名的例子是Shor在1994年提出的将整数分解为素数的量子算法。
二十年前,当量子计算的主题首次成为计算机科学的主流时,它最初主要是理论上的兴趣,因为实际量子计算机的发展实际上还有几十年的时间。然而,这种情况似乎正在改变。现在有许多政府,公共和私人组织,包括加拿大的几个组织,正在积极尝试构建可扩展的量子计算机,并取得了切实的进展。 与此同时,越来越明显的是,即使可以建造一台可扩展的量子计算机,使其容错所需的实际资源也将是惊人的-根据一些估计,一个需要几百个逻辑量子位的计算可能需要数十万个物理量子位和数百万年的计算时间,这在短期内被认为是现实的。
有了这个,实际的考虑突然被推到量子计算的前台。使量子计算可行所需的资源减少可能来自各种地方,例如,更好的纠错方案,改进的组件协议,如状态蒸馏,改进的算法和改进的编译技术。我的研究主要集中在后一个领域,特别是对酉近似和优化逻辑量子电路的改进方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Selinger, Peter其他文献
Quantum circuits of T-depth one
- DOI:
10.1103/physreva.87.042302 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:2.9
- 作者:
Selinger, Peter - 通讯作者:
Selinger, Peter
Dagger Compact Closed Categories and Completely Positive Maps
- DOI:
10.1016/j.entcs.2006.12.018 - 发表时间:
2007-03-06 - 期刊:
- 影响因子:0
- 作者:
Selinger, Peter - 通讯作者:
Selinger, Peter
Applying Quantitative Semantics to Higher-Order Quantum Computing
- DOI:
10.1145/2535838.2535879 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:0
- 作者:
Pagani, Michele;Selinger, Peter;Valiron, Benoit - 通讯作者:
Valiron, Benoit
A lambda calculus for quantum computation with classical control
- DOI:
10.1017/s0960129506005238 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:0.5
- 作者:
Selinger, Peter;Valiron, Benoit - 通讯作者:
Valiron, Benoit
Selinger, Peter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Selinger, Peter', 18)}}的其他基金
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
507937-2017 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
507937-2017 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
507937-2017 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Structural Approaches to Quantum Computing
量子计算的结构方法
- 批准号:
238774-2012 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Structural Approaches to Quantum Computing
量子计算的结构方法
- 批准号:
238774-2012 - 财政年份:2014
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Structural Approaches to Quantum Computing
量子计算的结构方法
- 批准号:
238774-2012 - 财政年份:2013
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
关于群上的短零和序列及其cross number的研究
- 批准号:11501561
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
堆垒基与Narkiewicz常数的研究
- 批准号:11226279
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
FcγR基因拷贝数和狼疮性肾炎相关研究
- 批准号:30801022
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
图的一般染色数与博弈染色数
- 批准号:10771035
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
507937-2017 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
507937-2017 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
507937-2017 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Families of algebraic curves with CM, multiple gamma functions, Stark conjecture and related number-theoretic problems
CM 代数曲线族、多重伽玛函数、斯塔克猜想和相关数论问题
- 批准号:
17K05183 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
- 批准号:
RGPIN-2017-05161 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and Number Theoretic Aspects of Vertex Algebra Theory
顶点代数理论的代数和数论方面
- 批准号:
0802962 - 财政年份:2008
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Research on ideal class groups of algebraic number fields and number theoretic functions and its applications
代数数域和数论函数的理想类群研究及其应用
- 批准号:
16540007 - 财政年份:2004
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)