Phase Field Computational Methods for Materials Science Problems
材料科学问题的相场计算方法
基本信息
- 批准号:RGPIN-2018-03863
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Cahn-Hillard (CH) model has been extensively studied by physical and computational scientists as well as mathematical analysts. It is a generic material science model of the competition between phase separation and diffusive mixing. Research on computational CH spans the spectrum of pure numerical analysis, efficient method implementation, and applications to materials science and other fields. My work, past and proposed, is in the middle of this spectrum, supported by colleagues on either side. I propose three related projects that would be of value to the larger community.
Benchmark Problems: In the literature, there is a systemic misunderstanding of the advantages of implicit time stepping and the disadvantages of energy stable schemes. The fundamental competition is between the increased accuracy of fully implicit schemes in meta-stable dynamics and the computational efficiency of energy stable schemes, which are inaccurate but have only simple terms (linear, constant coefficient - or convex) handled implicitly. There is a benchmark problem for CH posted at NIST that can be used to quantify the relative performance of the two approaches. I will develop and validate further benchmark problems for CH and some novel ones for sixth order Functionalized Cahn Hillard (FCH) and phase field crystal models.
Vector FCH method: There is recent interest in models of vector FCH type. These have a rich bifurcation structure and lead to highly varied solution morphology. They can model phenomena in many applications, including the interaction of different activated polymer materials in a solvent. These are highly nonlinear, sixth order models, hence computationally difficult. The wide range of spatial and temporal scales in the solutions put them out of reach for standard computational packages. The accuracy of fully implicit time stepping is necessary for these models, but it is the computational complexity of solving the resulting nonlinear system that is the main obstacle to well-resolved 2D and 3D computations. I will explore options to improve the performance of these solves (sparse, direct solution; fully nonlinear multi-grid; moving to a larger scale computational environment with an appropriate strategy).
Numerical Analysis: I have been working with colleagues on the numerical analysis of a class of energy stable schemes for CH and related models. One my observations is that with suitable adaptive time stepping strategies, fully implicit time stepping does not lead to an increase in energy in CH computations provided time steps are chosen adaptively to match the time scale of the dynamics. Some asymptotic results, which I will detail in the proposal, suggest that this is provable in certain cases of metastable dynamics, for which accurate, large time steps are appropriate. This will be work with a student, Xinyu Cheng, jointly supervised by Dong Li.
Cahn-Hillard(CH)模型已经被物理和计算科学家以及数学分析家广泛研究。它是相分离和扩散混合之间竞争的通用材料科学模型。计算CH的研究跨越了纯数值分析,有效的方法实现,以及材料科学和其他领域的应用。我的工作,无论是过去的还是现在提出的,都属于这一范围的中间,得到了两边同事的支持。我提出了三个相关的项目,这将是有价值的更大的社区。
基准问题:在文献中,有一个系统的误解的优点隐式时间推进和能量稳定的格式的缺点。根本的竞争是在亚稳定动力学中的全隐式方案的增加的准确性和能量稳定方案的计算效率之间,能量稳定方案是不准确的,但只有简单的条款(线性,常系数或凸)隐式处理。在NIST发布的CH中有一个基准问题,可以用来量化两种方法的相对性能。我将进一步开发和验证CH的基准问题和一些新的六阶功能化Cahn Hillard(FCH)和相场晶体模型。
矢量FCH方法:最近对矢量FCH类型的模型感兴趣。这些具有丰富的分叉结构并导致高度不同的溶液形态。它们可以模拟许多应用中的现象,包括不同活化聚合物材料在溶剂中的相互作用。这些是高度非线性的六阶模型,因此计算困难。解决方案中的空间和时间尺度范围广泛,使标准计算软件包无法实现。全隐式时间步进的准确性对于这些模型是必要的,但是求解所产生的非线性系统的计算复杂性是良好分辨的2D和3D计算的主要障碍。我将探索提高这些解决方案的性能的选项(稀疏,直接解决方案;完全非线性多重网格;使用适当的策略移动到更大规模的计算环境)。
数值分析:我一直在与同事的数值分析一类能量稳定的计划CH和相关的模式。我的一个观察是,与合适的自适应时间步进策略,全隐式时间步进不会导致CH计算中的能量增加,只要自适应地选择时间步长以匹配动态的时间尺度。我将在提案中详细介绍的一些渐近结果表明,这在亚稳态动力学的某些情况下是可证明的,对于这些情况,精确的大时间步长是合适的。这将是一个工作与学生,新宇成,共同监督董丽。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wetton, Brian其他文献
Slow Migration of Brine Inclusions in First-Year Sea Ice
第一年海冰中盐水包裹体的缓慢迁移
- DOI:
10.1137/21m1440244 - 发表时间:
2022 - 期刊:
- 影响因子:1.9
- 作者:
Kraitzman, Noa;Promislow, Keith;Wetton, Brian - 通讯作者:
Wetton, Brian
Stability of travelling wave solutions for coupled surface and grain boundary motion
- DOI:
10.1016/j.physd.2010.05.008 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:4
- 作者:
Beck, Margaret;Pan, Zhenguo;Wetton, Brian - 通讯作者:
Wetton, Brian
Flow distribution in proton exchange membrane fuel cell stacks
- DOI:
10.1016/j.jpowsour.2006.06.081 - 发表时间:
2006-11-08 - 期刊:
- 影响因子:9.2
- 作者:
Chang, Paul A. C.;St-Pierre, Jean;Wetton, Brian - 通讯作者:
Wetton, Brian
Wetton, Brian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wetton, Brian', 18)}}的其他基金
Phase Field Computational Methods for Materials Science Problems
材料科学问题的相场计算方法
- 批准号:
RGPIN-2018-03863 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Phase Field Computational Methods for Materials Science Problems
材料科学问题的相场计算方法
- 批准号:
RGPIN-2018-03863 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Phase Field Computational Methods for Materials Science Problems
材料科学问题的相场计算方法
- 批准号:
RGPIN-2018-03863 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Development of advanced mathematical modelling techniques and algorithms to enhance the performance of a lithium ion battery management system
开发先进的数学建模技术和算法,以提高锂离子电池管理系统的性能
- 批准号:
524101-2018 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Engage Grants Program
Phase Field Computational Methods for Materials Science Problems
材料科学问题的相场计算方法
- 批准号:
RGPIN-2018-03863 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
High accuracy computational methods for materials science and multiphase flow applications
用于材料科学和多相流应用的高精度计算方法
- 批准号:
122105-2013 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
State of health estimation for lithium ion batteries
锂离子电池的健康状况评估
- 批准号:
505815-2016 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Engage Grants Program
High accuracy computational methods for materials science and multiphase flow applications
用于材料科学和多相流应用的高精度计算方法
- 批准号:
122105-2013 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
High accuracy computational methods for materials science and multiphase flow applications
用于材料科学和多相流应用的高精度计算方法
- 批准号:
122105-2013 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
High accuracy computational methods for materials science and multiphase flow applications
用于材料科学和多相流应用的高精度计算方法
- 批准号:
122105-2013 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
- 批准号:21506066
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Develop a Hybrid Adaptive Particle-Field Simulation Method for Solutions of Macromolecules and a New Computational Chemistry Course for Lower-Division Undergraduates
职业:开发用于大分子解决方案的混合自适应粒子场模拟方法以及低年级本科生的新计算化学课程
- 批准号:
2337602 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
CAREER: Tracking the evolution of human locomotion through field, experimental, and computational analyses of fossil footprints
职业:通过对化石足迹的现场、实验和计算分析来跟踪人类运动的演变
- 批准号:
2335894 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
- 批准号:
10678562 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Computational Infrastructure for Automated Force Field Development and Optimization
用于自动力场开发和优化的计算基础设施
- 批准号:
10699200 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Using Computational Time-Dependent Ginzburg-Landau Theory to calculate & visualise the current density of high-field superconductors in fusion tokamak
使用计算瞬态Ginzburg-Landau理论进行计算
- 批准号:
2910484 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Studentship
Harnessing Quantum Computational Methods, Tensor Networks, and Machine Learning for Advanced Simulations in Quantum Field Theories
利用量子计算方法、张量网络和机器学习进行量子场论的高级模拟
- 批准号:
2876830 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Studentship
Development of High-Performance Finite-Difference Based Computational Models for Electromagnetic Field Assessment
开发基于有限差分的高性能电磁场评估计算模型
- 批准号:
568474-2022 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Postdoctoral Fellowships
Phase Field Computational Methods for Materials Science Problems
材料科学问题的相场计算方法
- 批准号:
RGPIN-2018-03863 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Computational study on the secondary structure dependence of the interaction in protein tertiary structure formation and the development of a new force field
蛋白质三级结构形成中相互作用的二级结构依赖性的计算研究和新力场的发展
- 批准号:
22K06164 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Phase Field Computational Methods for Materials Science Problems
材料科学问题的相场计算方法
- 批准号:
RGPIN-2018-03863 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual