Storage and Memory Management for Data-Intensive Computing
数据密集型计算的存储和内存管理
基本信息
- 批准号:RGPIN-2018-06391
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computation is increasingly moving into data centres with the widespread adoption of the Cloud computing model, while data centre computing itself is being radically transformed by the availability of very large main memories, the commodification of new hardware technologies such as Infiniband networking with Remote Direct Memory Access (RDMA) capabilities, and high capacity solid state disk (SSD) storage. In this environment, a rack of compute nodes has become the new data centre building block, known as rack-scale computing. Also, non-volatile memory is becoming a commercial reality with the introduction of Intel's 3D XPoint technology. This hardware revolution has profound implications for systems-level software, especially the storage and memory management layers, as old performance bottlenecks are eliminated and new ones emerge.
Hardware advances and distributed data processing frameworks are fueling rapid advances in data analytics and machine learning, enabling applications in automated language translation, image understanding and autonomous vehicles (to name just a few). Today's frameworks are often scalable but highly inefficient, squandering the potential of new hardware with excessive software overheads. My research explores ways to manage the burgeoning wealth of hardware resources, enabling future data-intensive analytics applications to operate at larger scales, more efficiently, and with greater reliability. We summarize three specific avenues to achieve this goal.
1. A unified rack-scale persistent memory storage system: Existing research on persistent memory storage improves on traditional file systems designed for slow, block-based devices, but it does not consider issues of allocation, access control, and consistency when scaling beyond a single node. Future rack-scale computing will demand a scalable, parallel and distributed file system that exposes the performance of emerging persistent memory across a full rack of nodes.
2. Memory-locality aware scheduling for data analytics frameworks: Many large-scale data analytics applications use Apache Spark or similar computing frameworks, which are designed with the assumption that data is stored on slow-to-access disks. Disk locality is of decreasing importance when nodes in a rack are connected by high-speed networks. We are exploring ways to exploit information about what parts of the input data are already in memory at each node, making smarter task placement possible.
3. In-memory distributed spatiotemporal data analytics: The rise of sensors and GPS-equipped mobile devices is driving rapid growth of spatiotemporal data, enabling novel applications that require sophisticated spatiotemporal data analytics. The expanding data volume means these datasets may soon exceed the capacity of even large-memory servers, however, requiring new techniques for in-memory rack-scale processing.
随着云计算模型的广泛采用,计算正越来越多地转移到数据中心,而数据中心计算本身正在被非常大的主存储器的可用性、新硬件技术的商品化(如具有远程直接内存访问(RDMA)功能的Infiniband网络和高容量固态磁盘(SSD)存储)彻底改变。在这种环境中,计算节点的机架已成为新的数据中心构建块,称为机架级计算。此外,随着英特尔3D XPoint技术的引入,非易失性存储器正在成为商业现实。这种硬件革命对系统级软件,特别是存储和内存管理层具有深远的影响,因为旧的性能瓶颈被消除了,新的性能瓶颈出现了。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DemkeBrown, Angela其他文献
DemkeBrown, Angela的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DemkeBrown, Angela', 18)}}的其他基金
Storage and Memory Management for Data-Intensive Computing
数据密集型计算的存储和内存管理
- 批准号:
RGPIN-2018-06391 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Storage and Memory Management for Data-Intensive Computing
数据密集型计算的存储和内存管理
- 批准号:
RGPIN-2018-06391 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Storage and Memory Management for Data-Intensive Computing
数据密集型计算的存储和内存管理
- 批准号:
RGPIN-2018-06391 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Storage and Memory Management for Data-Intensive Computing
数据密集型计算的存储和内存管理
- 批准号:
RGPIN-2018-06391 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Infiniband-connected Servers for In-Memory Rack-Scale Computing Research
用于内存机架规模计算研究的 Infiniband 连接服务器
- 批准号:
RTI-2016-00484 - 财政年份:2015
- 资助金额:
$ 2.99万 - 项目类别:
Research Tools and Instruments
"Dr. OS: Operating system analysis, debugging and security tools based on dynamic binary translation"
《OS博士:基于动态二进制翻译的操作系统分析、调试和安全工具》
- 批准号:
250324-2012 - 财政年份:2015
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
"Dr. OS: Operating system analysis, debugging and security tools based on dynamic binary translation"
《OS博士:基于动态二进制翻译的操作系统分析、调试和安全工具》
- 批准号:
250324-2012 - 财政年份:2014
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
"Dr. OS: Operating system analysis, debugging and security tools based on dynamic binary translation"
《OS博士:基于动态二进制翻译的操作系统分析、调试和安全工具》
- 批准号:
250324-2012 - 财政年份:2013
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
"Dr. OS: Operating system analysis, debugging and security tools based on dynamic binary translation"
《OS博士:基于动态二进制翻译的操作系统分析、调试和安全工具》
- 批准号:
250324-2012 - 财政年份:2012
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Integrated application and operating system optimization
集成应用程序和操作系统优化
- 批准号:
250324-2007 - 财政年份:2011
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
CREB在杏仁核神经环路memory allocation中的作用和机制研究
- 批准号:31171079
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
面向多核处理器的硬软件协作Transactional Memory系统结构
- 批准号:60873053
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
CRII: OAC: Towards Efficient Memory Management on Terabyte-Scale CXL-Enabled Tiered Memory Systems
CRII:OAC:在支持 CXL 的 TB 级分层内存系统上实现高效内存管理
- 批准号:
2348350 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
CSR: Small: Learning and Management in Tiered Memory Systems
CSR:小:分层内存系统中的学习和管理
- 批准号:
2323100 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
M4Secure: Making Memory Management More Secure
M4Secure:让内存管理更安全
- 批准号:
EP/X037304/1 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Research Grant
M4Secure: Making Memory Management More Secure
M4Secure:让内存管理更安全
- 批准号:
EP/X037525/1 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Research Grant
CSR: Small: A Fine-Grained Hierarchical Memory Management System for Applications with Dynamic Memory Demand on GPUs
CSR:小型:针对 GPU 上具有动态内存需求的应用程序的细粒度分层内存管理系统
- 批准号:
2311610 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Terabyte-scale Tiered Memory Management
合作研究:CNS 核心:中:TB 级分层内存管理
- 批准号:
2212580 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
Storage and Memory Management for Data-Intensive Computing
数据密集型计算的存储和内存管理
- 批准号:
RGPIN-2018-06391 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Architecting a Hardware-Software Co-Designed Data Management System for Heterogeneous Memory Computers
职业:为异构内存计算机构建软硬件协同设计的数据管理系统
- 批准号:
2144883 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
NetPM: Co-designing Data Management and Networking Principles for Persistent Memory
NetPM:共同设计持久内存的数据管理和网络原则
- 批准号:
EP/V053418/1 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Research Grant
Collaborative Research: CNS Core: Medium: Terabyte-scale Tiered Memory Management
合作研究:CNS 核心:中:TB 级分层内存管理
- 批准号:
2212579 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant