"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
基本信息
- 批准号:418296-2012
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, random constructions have become a very fruitful tool in Quantum Information Theory (QIT). The high-dimensional setting is very common in QIT since mathematical descriptions of QIT (as well as other scientific and engineering) questions often involve a large number of degrees of freedom (which can be interpreted as the dimension). For instance, the state space of an 8 qutrit quantum system is of dimension of more than 43 million. Such a high-dimensional setting makes the numerical approach impractical. However, Geometric Functional Analysis (GFA) and Random Matrices (RM) bring the "blessing of dimensionality" because of the "central limit theorem-like" effects. These areas aim to understand typical features of geometric objects and matrix valued probability measures as the dimension become large. Another common feature for QIT is convexity. Many objects of interest in QIT are convex bodies. Hence, understanding the geometric properties of convex bodies is important for QIT, and is the main goal for Convex Geometric Analysis (CGA).
The proposed research will involve several projects in CGA and in QIT. In CGA, the PI will continue his work on understanding properties of affine invariants associated with convex bodies and exploring their connections with other fields, such as PDE, Geometric Tomography, and Information Theory. In QIT, the PI will focus on understanding properties of entanglement, PPT and random induced states, and further explore the connections between QIT, RM, CGA and GFA. It is hoped that the proposed work will deepen the understanding of affine invariants (especially affine surface areas), help build foundation on the Orlicz-Brunn-Minkowski theory, and develop new affine invariants for spaces other than real Euclidean space. In QIT, it is expected that the proposed work will provide much deeper view of quantum entanglement, and provide useful results for detecting quantum entanglement. Lastly, the proposed work will be advantageous to the training of HQP as the PI has specific plans to involve students in his research.
近年来,随机结构已成为量子信息理论(QIT)中一个卓有成效的工具。高维设置在量子信息技术中非常常见,因为量子信息技术(以及其他科学和工程)问题的数学描述通常涉及大量的自由度(可以解释为维度)。例如,一个8量子位量子系统的状态空间的维数超过4300万。这样的高维设置使得数值方法不切实际。然而,几何泛函分析(GFA)和随机矩阵(RM)由于其“中心极限定理”效应而带来了“维数的祝福”。这些领域的目的是了解几何对象的典型特征和矩阵值概率测度,因为维度变大。QIT的另一个常见特性是凸性。QIT中许多感兴趣的对象都是凸体。因此,了解凸体的几何性质对量子力学非常重要,也是凸几何分析(convex geometric Analysis, CGA)的主要目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ye, Deping其他文献
On the Bures volume of separable quantum states
- DOI:
10.1063/1.3187216 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:1.3
- 作者:
Ye, Deping - 通讯作者:
Ye, Deping
Phase transitions for random states and a semicircle law for the partial transpose
- DOI:
10.1103/physreva.85.030302 - 发表时间:
2012-03-12 - 期刊:
- 影响因子:2.9
- 作者:
Aubrun, Guillaume;Szarek, Stanislaw J.;Ye, Deping - 通讯作者:
Ye, Deping
Ye, Deping的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ye, Deping', 18)}}的其他基金
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2012
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
变分次凸性及其应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
双调和整映射与对数调和映射理论中的若干问题
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
随机局部凸模中的稳定紧性理论及其应用
- 批准号:2023JJ30642
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
Banach空间几何理论在凸微分分析和广义逆上的应用
- 批准号:12271121
- 批准年份:2022
- 资助金额:47 万元
- 项目类别:面上项目
渐进泛函分析中的几何函数化
- 批准号:12001302
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
积分几何与凸体几何分析讲习班
- 批准号:12026418
- 批准年份:2020
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
仿射等周不等式的函数形式
- 批准号:11971080
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
不可微泛函和Orlicz闵科夫斯基问题
- 批准号:11971027
- 批准年份:2019
- 资助金额:48.0 万元
- 项目类别:面上项目
有界区域上$\sigma_2$-Yamabe方程的几何与分析
- 批准号:11971137
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
Minkowski问题与PDE中的相关变分问题
- 批准号:11971005
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Isoperimetric and Minkowski Problems in Convex Geometric Analysis
职业:凸几何分析中的等周和闵可夫斯基问题
- 批准号:
2337630 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Continuing Grant
Study on curvatures from the viewpoint of new convexities and its application to geometric analysis
新凸性角度的曲率研究及其在几何分析中的应用
- 批准号:
19K03494 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of Fourier analysis to convex geometry and geometric tomography
傅里叶分析在凸几何和几何断层扫描中的应用
- 批准号:
RGPIN-2014-03874 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Applications of Fourier analysis to convex geometry and geometric tomography
傅里叶分析在凸几何和几何断层扫描中的应用
- 批准号:
RGPIN-2014-03874 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Applications of Fourier analysis to convex geometry and geometric tomography
傅里叶分析在凸几何和几何断层扫描中的应用
- 批准号:
RGPIN-2014-03874 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Applications of Fourier analysis to convex geometry and geometric tomography
傅里叶分析在凸几何和几何断层扫描中的应用
- 批准号:
RGPIN-2014-03874 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
- 批准号:
418296-2012 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Applications of Fourier analysis to convex geometry and geometric tomography
傅里叶分析在凸几何和几何断层扫描中的应用
- 批准号:
RGPIN-2014-03874 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual