Degradation Analysis, Optimal Design, and Intelligent Management of Lithium Ion Batteries

锂离子电池的劣化分析、优化设计与智能管理

基本信息

  • 批准号:
    RGPIN-2018-05471
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The increasing energy demands of a growing population and climate change challenges provide a strong driving force for renewable energy and transportation electrification. As one of the most promising energy storage systems, Li-ion batteries become widely used in the renewable energy systems and transportation electrification. However, there are still many issues facing Li-ion batteries. One of the most important issues is the degradation of the cells during operation, which becomes the limiting factor in battery cycle life. Longer cycle life is urgently needed to achieve the economic viability in electric vehicles and renewable energy infrastructure. In order to achieve longer cycle life, several key questions need to be addressed, including: (1) how do Li-ion batteries degrade over long-term cycling (degradation analysis); (2) how should we design Li-ion batteries that last longer (optimal design); (3) how should we manage Li-ion batteries in different applications to achieve longer cycle life (intelligent management). The proposed research will investigate the battery long term degradation and address these knowledge deficiencies. The long-term degradation process remains poorly understood due to its complexity. Preliminary results indicate different stages of degradation over long-term cycling. A high fidelity degradation model will be developed and experimentally validated to predict the long-term degradation. Through the insights provided by the degradation analysis, potential opportunities for cycle life improvement will be identified. Optimal design techniques will be developed to optimize the battery design parameters to achieve longer cycle life. The proposed program will also develop optimal battery formation protocol, intelligent charging and health conscious management based on the degradation model. The overall program is divided into 5 objectives: 1) Investigate the main degradation mechanisms and develop degradation models; 2) Optimize battery design; 3) Design optimal formation protocol and intelligent charging; 4) Develop advanced battery monitoring system; 5) Develop intelligent management strategies. The results of this research will contribute to strengthening Canadian leadership in the area of renewable energy and transportation electrification. It will provide a deep understanding of battery long term degradation, specific recommendations of battery optimal design, and optimized battery management strategies. This will enable the industry to produce longer cycle-life battery cells and protect battery health during operation. It will significantly benefit the relevant products and services in a wide range of important applications in Canada. This program will also provide tremendous opportunities for training HQP for the fast growing transportation and energy industry in Canada.
不断增长的人口和气候变化挑战对能源的需求不断增加,为可再生能源和交通电气化提供了强大的驱动力。锂离子电池作为最有前途的储能系统之一,在可再生能源系统和交通电气化中得到了广泛的应用。然而,锂离子电池仍然面临许多问题。最重要的问题之一是电池在运行期间的退化,这成为电池循环寿命的限制因素。 为了实现电动汽车和可再生能源基础设施的经济可行性,迫切需要更长的循环寿命。为了实现更长的循环寿命,需要解决几个关键问题,包括:(1)锂离子电池在长期循环中如何降解(降解分析);(2)我们应该如何设计寿命更长的锂离子电池(优化设计);(3)我们应该如何管理不同应用中的锂离子电池以实现更长的循环寿命(智能管理)。 拟议的研究将调查电池的长期退化,并解决这些知识的不足。由于其复杂性,长期降解过程仍然知之甚少。初步结果表明,在长期循环的不同阶段的退化。将开发一个高保真度的降解模型,并通过实验验证,以预测长期降解。通过降解分析提供的见解,将确定循环寿命改进的潜在机会。将开发优化设计技术以优化电池设计参数,从而实现更长的循环寿命。该计划还将根据退化模型开发最佳电池形成协议,智能充电和健康意识管理。整个计划分为5个目标:1)研究主要退化机制并开发退化模型; 2)优化电池设计; 3)设计最佳化成方案和智能充电; 4)开发先进的电池监测系统; 5)开发智能管理策略。 这项研究的结果将有助于加强加拿大在可再生能源和交通电气化领域的领导地位。它将提供对电池长期退化的深刻理解,电池优化设计的具体建议,以及优化的电池管理策略。这将使该行业能够生产更长循环寿命的电池,并在运行期间保护电池健康。它将在加拿大广泛的重要应用中显着受益于相关产品和服务。该计划还将为加拿大快速发展的交通和能源行业提供培训HQP的巨大机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lin, Xianke其他文献

A Framework for Optimization on Battery Cycle Life
A Particle Filter and Long Short-Term Memory Fusion Technique for Lithium-Ion Battery Remaining Useful Life Prediction
用于锂离子电池剩余使用寿命预测的粒子滤波器和长短期记忆融合技术
A Neural Network Based Method for Thermal Fault Detection in Lithium-Ion Batteries
基于神经网络的锂离子电池热故障检测方法
Battery health estimation with degradation pattern recognition and transfer learning
  • DOI:
    10.1016/j.jpowsour.2022.231027
  • 发表时间:
    2022-02-05
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Deng, Zhongwei;Lin, Xianke;Hu, Xiaosong
  • 通讯作者:
    Hu, Xiaosong
Remaining Useful Life Prediction Using a Novel Feature-Attention-Based End-to-End Approach
使用基于特征注意力的新颖端到端方法进行剩余使用寿命预测

Lin, Xianke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lin, Xianke', 18)}}的其他基金

Degradation Analysis, Optimal Design, and Intelligent Management of Lithium Ion Batteries
锂离子电池的劣化分析、优化设计与智能管理
  • 批准号:
    RGPIN-2018-05471
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Degradation Analysis, Optimal Design, and Intelligent Management of Lithium Ion Batteries
锂离子电池的劣化分析、优化设计与智能管理
  • 批准号:
    RGPIN-2018-05471
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
AI-based early failure detection in 3D printing for better print quality, less material waste, and shorter trial and error process
3D 打印中基于人工智能的早期故障检测可提高打印质量、减少材料浪费并缩短试错过程
  • 批准号:
    557164-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Alliance Grants
Degradation Analysis, Optimal Design, and Intelligent Management of Lithium Ion Batteries
锂离子电池的劣化分析、优化设计与智能管理
  • 批准号:
    RGPIN-2018-05471
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Degradation Analysis, Optimal Design, and Intelligent Management of Lithium Ion Batteries
锂离子电池的劣化分析、优化设计与智能管理
  • 批准号:
    RGPIN-2018-05471
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Degradation Analysis, Optimal Design, and Intelligent Management of Lithium Ion Batteries
锂离子电池的劣化分析、优化设计与智能管理
  • 批准号:
    DGECR-2018-00183
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Continuing Grant
Labor Market Polarization, Earnings Inequality and Optimal Tax Progressivity: A Theoretical and Empirical Analysis
劳动力市场两极分化、收入不平等和最优税收累进性:理论与实证分析
  • 批准号:
    24K04909
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimal Grain Diagrams: Mathematical Analysis and Algorithms
最佳晶粒图:数学分析和算法
  • 批准号:
    EP/X035883/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Research Grant
Quasiconformal analysis, optimal triangulations and fractal geometry
拟共形分析、最优三角剖分和分形几何
  • 批准号:
    2303987
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Artificial intelligence analysis of atrial remodeling evolution in patients with atrial fibrillation: Towards optimal ablation strategies
心房颤动患者心房重塑演变的人工智能分析:寻求最佳消融策略
  • 批准号:
    10559270
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Structure Analysis of Science and Mathematics Problems and Application for Individually Optimal Learning
科学和数学问题的结构分析及其在个体最优学习中的应用
  • 批准号:
    23K02748
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Nna1's genetic changes and explore for optimal treatment methods
分析Nna1基因变化并探索最佳治疗方法
  • 批准号:
    23K06318
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Degradation Analysis, Optimal Design, and Intelligent Management of Lithium Ion Batteries
锂离子电池的劣化分析、优化设计与智能管理
  • 批准号:
    RGPIN-2018-05471
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis on metric measure spaces by optimal transport theory and Markov processes
最优输运理论和马尔可夫过程对度量测度空间的分析
  • 批准号:
    22H04942
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Optimal and Robust Designs for Active Learning and Regression Analysis
主动学习和回归分析的最佳稳健设计
  • 批准号:
    RGPIN-2020-05283
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了