AI-based early failure detection in 3D printing for better print quality, less material waste, and shorter trial and error process
3D 打印中基于人工智能的早期故障检测可提高打印质量、减少材料浪费并缩短试错过程
基本信息
- 批准号:557164-2020
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
3D printing technologies are rapidly evolving. Fused Deposition Modeling (FDM) is one of the most popular types of 3D printers. However, there are still many challenges related to product quality, robustness, and reliability, which hinders the business expansion of 3D printing in the manufacturing industry. Research on the failure detection for the typical FDM machines and the corresponding automatic monitoring methods are required to address these challenges. This research program proposes an AI-based early failure detection system for 3D printing. This research program aims to achieve the following 4 objectives: (1) investigate the failure mechanisms in the 3D printing process to reproduce failures for data collection. (2) design experiment, collect the failure data, carry out correlation analysis, and extract the best features for failure detection. (3) based on the selected features, design the AI-based algorithms to detect failures. (4) implement the early failure detection system in the cloud-based 3D printing management system at Mech Solutions. This proposed project will combine the AI-based early fault detection system developed in Dr. Lin's lab and the commercialization capability of the industrial partner.
The NSERC Alliance Grant program provides an opportunity for us to develop the advanced failure detection methods in the university lab. The industrial partner, Mech Solutions, can benefit from the developed algorithms from Dr. Lin's lab to improve the 3D printing service. The results will significantly benefit the relevant products and services in a wide range of important applications in Canada through direct transfer of knowledge and technology to industry.
3D打印技术正在迅速发展。熔融沉积成型(FDM)是最受欢迎的3D打印机类型之一。然而,在产品质量、坚固性和可靠性方面仍然存在许多挑战,这阻碍了3D打印在制造业的业务扩展。研究典型FDM设备的故障检测和相应的自动监测方法是解决这些挑战的必要条件。该研究计划提出了一种基于AI的3D打印早期故障检测系统。本研究计划旨在达到以下4个目的:(1)研究3D打印过程中的故障机制,以重现故障数据收集。(2)设计实验,收集故障数据,进行相关性分析,提取用于故障检测的最佳特征。(3)根据选定的特征,设计基于人工智能的算法来检测故障。(4)在Mech Solutions基于云的3D打印管理系统中实施早期故障检测系统。该拟议项目将联合收割机结合林博士实验室开发的基于人工智能的早期故障检测系统和工业合作伙伴的商业化能力。
NSERC联盟资助计划为我们在大学实验室开发先进的故障检测方法提供了机会。工业合作伙伴Mech Solutions可以从Lin博士实验室开发的算法中受益,以改善3D打印服务。通过直接向工业界转让知识和技术,其结果将大大有利于加拿大广泛重要应用中的相关产品和服务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lin, Xianke其他文献
A Framework for Optimization on Battery Cycle Life
- DOI:
10.1149/2.0741814jes - 发表时间:
2018-10-30 - 期刊:
- 影响因子:3.9
- 作者:
Lin, Xianke;Lu, Wei - 通讯作者:
Lu, Wei
A Particle Filter and Long Short-Term Memory Fusion Technique for Lithium-Ion Battery Remaining Useful Life Prediction
用于锂离子电池剩余使用寿命预测的粒子滤波器和长短期记忆融合技术
- DOI:
10.1115/1.4049234 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:1.7
- 作者:
Hu, Xiaosong;Yang, Xin;Lin, Xianke - 通讯作者:
Lin, Xianke
A Neural Network Based Method for Thermal Fault Detection in Lithium-Ion Batteries
基于神经网络的锂离子电池热故障检测方法
- DOI:
10.1109/tie.2020.2984980 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:7.7
- 作者:
Ojo, Olaoluwa;Lang, Haoxiang;Lin, Xianke - 通讯作者:
Lin, Xianke
Battery health estimation with degradation pattern recognition and transfer learning
- DOI:
10.1016/j.jpowsour.2022.231027 - 发表时间:
2022-02-05 - 期刊:
- 影响因子:9.2
- 作者:
Deng, Zhongwei;Lin, Xianke;Hu, Xiaosong - 通讯作者:
Hu, Xiaosong
Remaining Useful Life Prediction Using a Novel Feature-Attention-Based End-to-End Approach
使用基于特征注意力的新颖端到端方法进行剩余使用寿命预测
- DOI:
10.1109/tii.2020.2983760 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:12.3
- 作者:
Liu, Hui;Liu, Zhenyu;Lin, Xianke - 通讯作者:
Lin, Xianke
Lin, Xianke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lin, Xianke', 18)}}的其他基金
Degradation Analysis, Optimal Design, and Intelligent Management of Lithium Ion Batteries
锂离子电池的劣化分析、优化设计与智能管理
- 批准号:
RGPIN-2018-05471 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Degradation Analysis, Optimal Design, and Intelligent Management of Lithium Ion Batteries
锂离子电池的劣化分析、优化设计与智能管理
- 批准号:
RGPIN-2018-05471 - 财政年份:2021
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Degradation Analysis, Optimal Design, and Intelligent Management of Lithium Ion Batteries
锂离子电池的劣化分析、优化设计与智能管理
- 批准号:
RGPIN-2018-05471 - 财政年份:2020
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Degradation Analysis, Optimal Design, and Intelligent Management of Lithium Ion Batteries
锂离子电池的劣化分析、优化设计与智能管理
- 批准号:
RGPIN-2018-05471 - 财政年份:2019
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Degradation Analysis, Optimal Design, and Intelligent Management of Lithium Ion Batteries
锂离子电池的劣化分析、优化设计与智能管理
- 批准号:
RGPIN-2018-05471 - 财政年份:2018
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Grants Program - Individual
Degradation Analysis, Optimal Design, and Intelligent Management of Lithium Ion Batteries
锂离子电池的劣化分析、优化设计与智能管理
- 批准号:
DGECR-2018-00183 - 财政年份:2018
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Early-Stage Clinical Trial of AI-Driven CBCT-Guided Adaptive Radiotherapy for Lung Cancer
AI驱动的CBCT引导的肺癌适应性放疗的早期临床试验
- 批准号:
10575081 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
AI-based Fall-Risk Assessment during Daily Activities in Post Stroke Survivors using Smartphones
使用智能手机对中风后幸存者进行日常活动期间基于人工智能的跌倒风险评估
- 批准号:
10580558 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Validation of artificial intelligence (AI) based software as medical device (SaMD) for retinopathy of prematurity (ROP)
验证基于人工智能 (AI) 的软件作为治疗早产儿视网膜病变 (ROP) 的医疗设备 (SaMD)
- 批准号:
10760401 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
New AI-based method for early detection of lung cancer
基于人工智能的肺癌早期检测新方法
- 批准号:
10069479 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
EU-Funded
ECG-AI Based Prediction and Phenotyping of Heart Failure with Preserved Ejection Fraction
基于 ECG-AI 的射血分数保留的心力衰竭预测和表型分析
- 批准号:
10717312 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Feasibility testing of a novel AI-enabled, cloud-based ECG diagnostic solution to enable fast and affordable diagnosis in long-term continuous ambulatory ECG monitoring
对新型人工智能、基于云的心电图诊断解决方案进行可行性测试,以在长期连续动态心电图监测中实现快速且经济实惠的诊断
- 批准号:
10545691 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
AI-based platform for predicting emerging vaccine-escape variants and designing mutation-proof antibodies
基于人工智能的平台,用于预测新出现的疫苗逃逸变异并设计防突变抗体
- 批准号:
10446127 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
AI-based platform for predicting emerging vaccine-escape variants and designing mutation-proof antibodies
基于人工智能的平台,用于预测新出现的疫苗逃逸变异并设计防突变抗体
- 批准号:
10619001 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Development of a AI-based medical device program for early diagnosis of postoperative recurrence of colorectal cancer
开发基于人工智能的结直肠癌术后复发早期诊断医疗器械程序
- 批准号:
22K15832 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Feasibility testing of a novel AI-enabled, cloud-based ECG diagnostic solution to enable fast and affordable diagnosis in long-term continuous ambulatory ECG monitoring
对新型人工智能、基于云的心电图诊断解决方案进行可行性测试,以在长期连续动态心电图监测中实现快速且经济实惠的诊断
- 批准号:
10742360 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别: