Pushing the limits of computer algebra: From the integer resolution of polynomial systems to the computation of topological closures

突破计算机代数的极限:从多项式系统的整数分辨率到拓扑闭包的计算

基本信息

  • 批准号:
    RGPIN-2018-06534
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The proposed themes will expand the scope of computer algebra research into two areas where much remains to be done: computations of limits in mathematical analysis and, computing the integer solutions of systems parametric linear equations and inequalities. These themes will also address important problems in high-performance computing: extending polyhedral compilation techniques to support non-linear expressions and, delivering efficient implementation of multi-precision and arbitrary precision arithmetic on hardware accelerators. Finally, the proposed research will support and enhance our more applied software projects with IBM Canada and Maplesoft, namely the MetaFork compilation framework and the RegularChains library.
所提出的主题将将计算机代数研究的范围扩展到两个领域,在这些领域要做很多要做:数学分析中限制的计算,并计算系统参数线性方程和不平等的整数解决方案。 这些主题还将解决高性能计算中的重要问题:扩展多面体汇编技术以支持非线性表达式,并在硬件加速器上提供有效的多先知和任意精确算术。 最后,拟议的研究将支持和增强我们使用加拿大IBM和Maplesoft的更应用的软件项目,即Metafork编译框架和常规链库。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MorenoMaza, Marc其他文献

MorenoMaza, Marc的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MorenoMaza, Marc', 18)}}的其他基金

Pushing the limits of computer algebra: From the integer resolution of polynomial systems to the computation of topological closures
突破计算机代数的极限:从多项式系统的整数分辨率到拓扑闭包的计算
  • 批准号:
    RGPIN-2018-06534
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Pushing the limits of computer algebra: From the integer resolution of polynomial systems to the computation of topological closures
突破计算机代数的极限:从多项式系统的整数分辨率到拓扑闭包的计算
  • 批准号:
    RGPIN-2018-06534
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Pushing the limits of computer algebra: From the integer resolution of polynomial systems to the computation of topological closures
突破计算机代数的极限:从多项式系统的整数分辨率到拓扑闭包的计算
  • 批准号:
    RGPIN-2018-06534
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Comprehensive optimization of parametric kernels for graphics processing units
图形处理单元参数化内核的全面优化
  • 批准号:
    500717-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
Pushing the limits of computer algebra: From the integer resolution of polynomial systems to the computation of topological closures
突破计算机代数的极限:从多项式系统的整数分辨率到拓扑闭包的计算
  • 批准号:
    RGPIN-2018-06534
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Comprehensive optimization of parametric kernels for graphics processing units
图形处理单元参数化内核的全面优化
  • 批准号:
    500717-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
Hardware Acceleration Technologies Enabling Polynomial System Solving
支持多项式系统求解的硬件加速技术
  • 批准号:
    262137-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Comprehensive optimization of parametric kernels for graphics processing units
图形处理单元参数化内核的全面优化
  • 批准号:
    500717-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Collaborative Research and Development Grants
Hardware Acceleration Technologies Enabling Polynomial System Solving
支持多项式系统求解的硬件加速技术
  • 批准号:
    262137-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Hardware Acceleration Technologies Enabling Polynomial System Solving
支持多项式系统求解的硬件加速技术
  • 批准号:
    262137-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
  • 批准号:
    12305031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机乘积和带状矩阵最大特征值的极限分布
  • 批准号:
    12371157
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
多项式扰动系统的极限环分支与符号计算
  • 批准号:
    12371175
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
局部相依结构下的自正则化及非自正则化的精细中心极限定理
  • 批准号:
    12301182
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
考虑动态效应和结构损伤的大型集装箱船结构极限强度及失效机理研究
  • 批准号:
    52371328
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Pushing the limits of computer algebra: From the integer resolution of polynomial systems to the computation of topological closures
突破计算机代数的极限:从多项式系统的整数分辨率到拓扑闭包的计算
  • 批准号:
    RGPIN-2018-06534
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Capacity limits in the neural circuitry of visual word recognition
视觉单词识别神经回路的容量限制
  • 批准号:
    10296072
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
Pushing the limits of computer algebra: From the integer resolution of polynomial systems to the computation of topological closures
突破计算机代数的极限:从多项式系统的整数分辨率到拓扑闭包的计算
  • 批准号:
    RGPIN-2018-06534
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Capacity limits in the neural circuitry of visual word recognition
视觉单词识别神经回路的容量限制
  • 批准号:
    10330043
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
Capacity limits in the neural circuitry of visual word recognition
视觉单词识别神经回路的容量限制
  • 批准号:
    10534775
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了