Toward a Large-Scale Superconducting Quantum Computer: Error Management and Scalability

迈向大规模超导量子计算机:错误管理和可扩展性

基本信息

  • 批准号:
    RGPIN-2019-04022
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Practical quantum computers are closer to reality than ever before. Among many implementations, trapped ions, semiconducting devices, and superconducting quantum circuits are among the most promising candidates to implement medium- and large-scale quantum computers with ~100-100000 qubits. Superconducting qubits have already been integrated in arrays of ~50 qubits and can in principle be further integrated. However, dissipation phenomena due to imperfect materials or inadequate engineering can cause a qubit to fail and, to date, continue to be a major challenge. Additionally, moving from medium- to large-scale systems will require truly scalable classical qubit wiring and control techniques that are not yet available. The community working on practical quantum computers has evolved dramatically in the last five years. Major ventures such as IBM and Google are investing hundreds of millions of dollars to improve and scale up qubit arrays. In order to be competitive, it is imperative to choose a research plan clinically. The classical integrated circuit industry should serve as an example. Major ventures build the hardware and software required for a complete computing platform; research labs investigate the open scientific and technological challenges and find solutions that are then adopted by the large companies. The long-term vision of my research program is to reduce qubit errors and develop scalable technologies for a large-scale quantum computer. The two main objectives are: O1) Error management: a. Banish dissipation due to imperfect materials by integrating a novel superconducting circuit: The pocketmon resonator. b. Realize a new qubit: The pocketmon qubit. O2) Scalability: a. Develop a new qubit wiring technique for a large-scale quantum computer: Pin-chip bonding for fully vertical interconnects. b. Benchmark pin-chip bonding with qubits. Material imperfections in superconducting on-chip devices are due to the presence of oxidized layers in proximity of the qubits. The pocketmon qubit is a new type of superconducting device where, instead of removing the oxidized layers, we store the qubit energy in a region of space that is only marginally affected by the unwanted layers. Pin-chip bonding is a novel qubit wiring technique that I invented. This technique makes it possible to operate two-dimensional arrays with more than 100000 qubits, permitting to reach any qubit in the array from above instead of laterally, as presently done with traditional techniques. If a square chip contains NxN qubits, accessing the qubits from above allows us to reach N2 qubits instead of just 4N qubits from the sides. Canada in general and, in particular, Waterloo have already created a strong “quantum ecosystem.” My research program aims at strengthening this effort in the direction of practical quantum computing technologies. This will generate a strong class of highly skilled Canadian students with expertise in a rapidly blooming field of research.
实用的量子计算机比以往任何时候都更接近现实。在许多实现方案中,囚禁离子、半导体器件和超导量子电路是实现约100-100000量子比特的中型和大型量子计算机的最有前途的候选方案。超导量子比特已经被集成到约50个量子比特的阵列中,并且原则上可以进一步集成。然而,由于不完美的材料或不适当的工程造成的耗散现象可能会导致量子比特失败,并且到目前为止,仍然是一个主要的挑战。此外,从中型系统转移到大规模系统将需要真正可扩展的经典量子比特布线和控制技术,而这些技术目前尚不存在。 致力于实用量子计算机的社区在过去五年中发生了戏剧性的变化。IBM和谷歌等大型企业正在投资数亿美元来改进和扩大量子比特阵列。为了具有竞争力,临床研究方案的选择势在必行。经典的集成电路产业应该是一个例子。大型企业建立一个完整的计算平台所需的硬件和软件;研究实验室调查开放的科学和技术挑战,并找到解决方案,然后被大公司采用。 我的研究计划的长期愿景是减少量子比特错误,并为大型量子计算机开发可扩展的技术。两个主要目标是: O1)错误管理: A.通过集成一种新的超导电路:口袋谐振器,消除由于不完美材料造成的耗散。 B.实现一个新的量子比特:口袋量子比特。 O2)可扩展性: A.为大规模量子计算机开发一种新的量子比特布线技术:完全垂直互连的管脚芯片键合。 B.使用量子比特对针芯片键合进行基准测试。 超导片上器件的材料缺陷是由于量子比特附近的氧化层的存在。口袋量子比特是一种新型的超导设备,我们将量子比特的能量存储在一个仅受不需要的层轻微影响的空间区域,而不是去除氧化层。 管脚芯片连接是我发明的一种新的量子比特布线技术。这项技术使操作超过100000个量子比特的二维阵列成为可能,允许从上方到达阵列中的任何量子比特,而不是像目前使用传统技术所做的那样横向进行。如果一个正方形芯片包含N×N个量子比特,从上面访问这些量子比特可以让我们达到N个量子比特,而不是从两边只有4N个量子比特。 加拿大,特别是滑铁卢,已经创造了一个强大的“量子生态系统”。我的研究计划旨在加强这一努力,朝着实用的量子计算技术的方向发展。这将产生一批高技能的加拿大学生,他们在一个迅速发展的研究领域拥有专业知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mariantoni, Matteo其他文献

Photon shell game in three-resonator circuit quantum electrodynamics
  • DOI:
    10.1038/nphys1885
  • 发表时间:
    2011-04-01
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Mariantoni, Matteo;Wang, H.;Cleland, A. N.
  • 通讯作者:
    Cleland, A. N.
Implementing the Quantum von Neumann Architecture with Superconducting Circuits
  • DOI:
    10.1126/science.1208517
  • 发表时间:
    2011-10-07
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Mariantoni, Matteo;Wang, H.;Martinis, John M.
  • 通讯作者:
    Martinis, John M.
Surface codes: Towards practical large-scale quantum computation
  • DOI:
    10.1103/physreva.86.032324
  • 发表时间:
    2012-09-18
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Fowler, Austin G.;Mariantoni, Matteo;Cleland, Andrew N.
  • 通讯作者:
    Cleland, Andrew N.
Two-photon probe of the Jaynes-Cummings model and controlled symmetry breaking in circuit QED
  • DOI:
    10.1038/nphys1016
  • 发表时间:
    2008-09-01
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Deppe, Frank;Mariantoni, Matteo;Gross, R.
  • 通讯作者:
    Gross, R.

Mariantoni, Matteo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mariantoni, Matteo', 18)}}的其他基金

Toward a Large-Scale Superconducting Quantum Computer: Error Management and Scalability
迈向大规模超导量子计算机:错误管理和可扩展性
  • 批准号:
    RGPIN-2019-04022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Toward a Large-Scale Superconducting Quantum Computer: Error Management and Scalability
迈向大规模超导量子计算机:错误管理和可扩展性
  • 批准号:
    RGPIN-2019-04022
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Toward a Large-Scale Superconducting Quantum Computer: Error Management and Scalability
迈向大规模超导量子计算机:错误管理和可扩展性
  • 批准号:
    RGPAS-2019-00058
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Toward a Large-Scale Superconducting Quantum Computer: Error Management and Scalability
迈向大规模超导量子计算机:错误管理和可扩展性
  • 批准号:
    RGPAS-2019-00058
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Toward a Large-Scale Superconducting Quantum Computer: Error Management and Scalability
迈向大规模超导量子计算机:错误管理和可扩展性
  • 批准号:
    RGPIN-2019-04022
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Surface Codes with Superconducting Quantum Circuits: From a Topological Quantum Memory to the Quantum Emulation of the Fermi-Hubbard Model
超导量子电路的表面代码:从拓扑量子存储器到费米-哈伯德模型的量子仿真
  • 批准号:
    435729-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Surface Codes with Superconducting Quantum Circuits: From a Topological Quantum Memory to the Quantum Emulation of the Fermi-Hubbard Model
超导量子电路的表面代码:从拓扑量子存储器到费米-哈伯德模型的量子仿真
  • 批准号:
    435729-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Surface Codes with Superconducting Quantum Circuits: From a Topological Quantum Memory to the Quantum Emulation of the Fermi-Hubbard Model
超导量子电路的表面代码:从拓扑量子存储器到费米-哈伯德模型的量子仿真
  • 批准号:
    435729-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Surface Codes with Superconducting Quantum Circuits: From a Topological Quantum Memory to the Quantum Emulation of the Fermi-Hubbard Model
超导量子电路的表面代码:从拓扑量子存储器到费米-哈伯德模型的量子仿真
  • 批准号:
    435729-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Surface Codes with Superconducting Quantum Circuits: From a Topological Quantum Memory to the Quantum Emulation of the Fermi-Hubbard Model
超导量子电路的表面代码:从拓扑量子存储器到费米-哈伯德模型的量子仿真
  • 批准号:
    435729-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
  • 批准号:
    30971650
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
  • 批准号:
    30800648
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
  • 批准号:
    30772435
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Toward the accurate large-scale structural variation detection by short read sequencers
通过短读长测序仪进行准确的大规模结构变异检测
  • 批准号:
    23KF0205
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
SEALPTSC Strain and Photonic Engineering Toward Stable, Efficient, and Large-scale All-perovskite Triple-junction Solar Cells
SEALPTSC 应变和光子工程实现稳定、高效和大规模全钙钛矿三结太阳能电池
  • 批准号:
    EP/Y029216/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Fellowship
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
  • 批准号:
    2327619
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
CAREER: Toward Hierarchical Game Theory and Hybrid Learning Framework for Safe, Efficient Large-scale Multi-agent Systems
职业:面向安全、高效的大规模多智能体系统的分层博弈论和混合学习框架
  • 批准号:
    2144646
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
Toward a Large-Scale Superconducting Quantum Computer: Error Management and Scalability
迈向大规模超导量子计算机:错误管理和可扩展性
  • 批准号:
    RGPIN-2019-04022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Toward resilient operation of large-scale systems
实现大型系统的弹性运行
  • 批准号:
    580585-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Alliance Grants
Toward a Large-Scale Superconducting Quantum Computer: Error Management and Scalability
迈向大规模超导量子计算机:错误管理和可扩展性
  • 批准号:
    RGPIN-2019-04022
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Learning and Control Theory Guided Approach Toward Designing and Operating Secure, Resilient, and Energy-Efficient Large-Scale Computing Systems
统计学习和控制理论指导设计和操作安全、弹性和节能的大规模计算系统的方法
  • 批准号:
    532473-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Toward a Large-Scale Superconducting Quantum Computer: Error Management and Scalability
迈向大规模超导量子计算机:错误管理和可扩展性
  • 批准号:
    RGPAS-2019-00058
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
CAREER: Toward Securing Emerging Computing Platforms via Large-Scale Dynamic Analysis
职业:通过大规模动态分析保护新兴计算平台
  • 批准号:
    1942793
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了