Random processes and their underlying geometry
随机过程及其基础几何
基本信息
- 批准号:RGPIN-2019-03927
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of the proposed research program is to understand how the long-term behaviour of random processes relates to the geometry of the underlying space. The emphasis is on developing robust and widely applicable methods to obtain quantitative estimates on the behaviour of Markov processes, and in particular diffusions, random walks, and jump processes.
The behaviour of a Markov process is captured through estimates of its transition probability density. For Brownian motion on a Riemannian manifold (e.g., a smooth surface), this transition density is called the heat kernel; in other words, the fundamental solution of the heat equation. More generally, we use the term heat kernel' to denote the transition kernel of a Markov process. Harnack inequalities are classical regularity estimates of solutions to elliptic and parabolic PDEs, and play an essential role in this area of research. More recently, Harnack inequalities have been used to study diffusions and jump processes on fractals, and transport properties in random media. The heat kernel and its estimates play an important role in diverse areas of Mathematics including Probability Theory, Analysis and PDEs, Geometry, and Mathematical Physics
The overarching theme of the proposed research is to develop robust methods to prove quantitative estimates for a large class of Markov processes. The quantitative estimates include heat kernel estimates, Harnack inequalities, and functional inequalities. It is of particular interest to develop methods that are robust to
perturbations; for instance, the addition or removal of a few edges in a graph, or suitable changes (quasiisometry) in the metric of a Riemannian manifold. A further long-term goal is to develop robust methods to obtain heat kernel estimates even when the Harnack inequality fails. Ultimately, we intend to use these robust methods to compute the behaviour of Markov process on random spaces, such as the uniform infinite planar triangulation (UIPT). The predictions of physicists on the behaviour of random walk on UIPT remain to be proved and thus provide a concrete testing ground for some of the research considered in this proposal. More generally, one of the aims of this research is to understand transport phenomena in random media.
The random processes in the proposal play a key role in many applications. Markov processes are used to model a wide range of phenomena in physics, biology, statistics, and finance. Further, these processes are used as computational tools and for simulations in computer science (Markov Chain Monte Carlo and other randomized
algorithms). The training of bright, young researchers is an important component of this proposal. By participating in this research, graduate students and postdoctoral fellows will be equipped to contribute to our knowledge of the fundamental aspects of random processes
拟议的研究计划的目的是了解如何随机过程的长期行为与底层空间的几何形状。重点是发展强大的和广泛适用的方法,以获得定量估计马尔可夫过程的行为,特别是扩散,随机游走和跳跃过程。
马尔可夫过程的行为是通过估计其转移概率密度来捕获的。对于黎曼流形上的布朗运动(例如,光滑表面),这个跃迁密度称为热核;换句话说,热方程的基本解。更一般地,我们使用术语“热核”来表示马尔可夫过程的转移核。Harnack不等式是椭圆型和抛物型偏微分方程解的经典正则性估计,在这一领域的研究中起着重要的作用。最近,Harnack不等式被用来研究分形上的扩散和跳跃过程,以及随机介质中的输运性质。热核及其估计在数学的各个领域都起着重要的作用,包括概率论、分析和偏微分方程、几何和数学物理
拟议研究的首要主题是开发稳健的方法来证明一大类马尔可夫过程的定量估计。定量估计包括热核估计、Harnack不等式和函数不等式。特别令人感兴趣的是,开发对以下方面具有鲁棒性的方法:
扰动;例如,在图中添加或删除一些边,或者在黎曼流形的度量中进行适当的改变(拟等距)。另一个长期目标是开发鲁棒的方法,即使在Harnack不等式失败时也能获得热核估计。最终,我们打算使用这些强大的方法来计算随机空间上的马尔可夫过程的行为,如均匀无限平面三角剖分(UIPT)。物理学家对UIPT上随机游走行为的预测仍有待证明,因此为本提案中考虑的一些研究提供了具体的测试基础。更一般地说,本研究的目的之一是了解随机介质中的传输现象。
该方案中的随机过程在许多应用中起着关键作用。马尔可夫过程被用来模拟物理学、生物学、统计学和金融学中的各种现象。此外,这些过程被用作计算工具并用于计算机科学中的模拟(马尔可夫链蒙特卡罗和其他随机化方法)。
算法)。培养聪明、年轻的研究人员是这项建议的一个重要组成部分。通过参与这项研究,研究生和博士后研究员将能够为我们对随机过程基本方面的知识做出贡献
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murugan, Mathav其他文献
Stability of the elliptic Harnack inequality
- DOI:
10.4007/annals.2018.187.3.4 - 发表时间:
2018-05-01 - 期刊:
- 影响因子:4.9
- 作者:
Barlow, Martin T.;Murugan, Mathav - 通讯作者:
Murugan, Mathav
Murugan, Mathav的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murugan, Mathav', 18)}}的其他基金
Random processes and their underlying geometry
随机“过程”及其基础几何
- 批准号:
RGPIN-2019-03927 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Random processes and their underlying geometry
随机过程及其基础几何
- 批准号:
RGPIN-2019-03927 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Random processes and their underlying geometry
随机过程及其基础几何
- 批准号:
RGPAS-2019-00001 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Random processes and their underlying geometry
随机过程及其基础几何
- 批准号:
RGPAS-2019-00001 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Random processes and their underlying geometry
随机过程及其基础几何
- 批准号:
DGECR-2019-00312 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Random processes and their underlying geometry
随机过程及其基础几何
- 批准号:
RGPIN-2019-03927 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Submesoscale Processes Associated with Oceanic Eddies
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
相似海外基金
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334777 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334775 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334776 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Submesoscale Mixing Processes caused by Northward Shifted Kuroshio near the Yakushima and Tanegashima Islands and their chemical and biological impacts
屋久岛和种子岛附近黑潮北移引起的亚中尺度混合过程及其化学和生物影响
- 批准号:
23H01244 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fate of antimicrobial resistance genes in wastewater treatment processes focusing on their carrier bacteria and viruses.
废水处理过程中抗菌素耐药性基因的命运主要集中在其载体细菌和病毒上。
- 批准号:
23H01535 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An innovative PaaS that combines plastic IC design and manufacturing processes to enable SMEs to design their own integrated circuits
结合塑料 IC 设计和制造工艺的创新 PaaS,使中小企业能够设计自己的集成电路
- 批准号:
10057464 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative R&D
Gut microbiome and blood indices in patients with AD and their spousal caregivers
AD 患者及其配偶照顾者的肠道微生物组和血液指数
- 批准号:
10575244 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
A Study of Gender Differences in Cognitive Characteristics and Their Developmental Processes in ASD and ADHD
ASD和ADHD认知特征的性别差异及其发展过程的研究
- 批准号:
23K02287 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moist processes and their interaction with storm tracks
潮湿过程及其与风暴路径的相互作用
- 批准号:
2890052 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Studentship
Promoting Health and Reducing Risk among Hispanic Sexual Minority Youth and their Families
促进西班牙裔性少数青少年及其家人的健康并降低风险
- 批准号:
10658477 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别: