Model predictive control of a mixed battery array for electricity grid storage
电网存储混合电池阵列的模型预测控制
基本信息
- 批准号:RGPIN-2019-04286
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My Discovery Grant program will develop a new model-predictive-control strategy to optimize performance of battery energy storage systems using repurposed electric vehicle batteries in a second-life application for electricity grid storage. Model-predictive-control of energy storage is in its infancy, and has not yet been applied to second-life applications.
Lithium ion batteries have become the choice technology for utility grade electricity grid energy storage due to long life and high energy efficiency. However, they are often subsidized due to high cost ($350/kWh). Most lithium ion batteries are presently used for electric vehicles (EV). At end of vehicle life the EV batteries may be repurposed into a second-life for grid storage. While the batteries may have degraded to 75% of their original capacity, this is acceptable for stationary applications, and the very low purchase price of used batteries is compelling (<$35/kWh).
My program proposes a "mixed battery array" that recognizes the continued evolution of EV batteries and their wide geographic dispersion as a function of population. It repurposes batteries from a wide variety of EVs, at different levels of degradation, into an array with individual power converters at a centralized facility. To date, we have tested energy performance of Nissan, Tesla, BMW, and Chevrolet batteries in electricity grid storage services of peak shaving and frequency regulation, achieving a range of results due to the diverse electrochemical materials, format (cylindrical, pouch), and thermal management (passive, air, liquid).
The next step is to create a model predictive control system that optimally apportions stacked-service calls (power, duration) across all the batteries, taking into account their specific characteristics. For example, using the most energy efficient batteries for peak shaving, the powerful batteries for frequency regulation, and accelerating usage of batteries that are near end of life so as to remove/recycle them and replace them with another used EV battery pack. The control system is a critical aspect to overall performance as it must pre-position the battery state-of-charge by discharging or charging in preparation for upcoming service call forecasts.
My Discovery Grant program has three phases: Phase 1 tests batteries to map trends in energy capacity, efficiency, power, and degradation to create discrete battery models. Phase 2 develops the model predictive control strategy to optimally operate each battery for technical and economic performance. Phase 3 demonstrates/validates the new control strategy on used EV battery packs with multi-channel power converters.
Research outputs are new energy storage architectures and control strategies for industry and utilities. This simultaneously brings value to owners of old EVs (to sell their battery packs), brings a new low-cost energy storage technology to utilities, and can be commercialized in all jurisdictions of Canada and beyond.
我的发现基金项目将开发一种新的模型预测控制策略,以优化电池储能系统的性能,该系统使用重新利用的电动汽车电池,用于电网存储的二次应用。能量存储的模型预测控制尚处于起步阶段,尚未应用于二次生命应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Swan, Lukas其他文献
Experimental implementation of whole building MPC with zone based thermal comfort adjustments
- DOI:
10.1016/j.buildenv.2017.09.003 - 发表时间:
2017-11-15 - 期刊:
- 影响因子:7.4
- 作者:
Hilliard, Trent;Swan, Lukas;Qin, Zheng - 通讯作者:
Qin, Zheng
Swan, Lukas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Swan, Lukas', 18)}}的其他基金
Model predictive control of a mixed battery array for electricity grid storage
电网存储混合电池阵列的模型预测控制
- 批准号:
RGPIN-2019-04286 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Model predictive control of a mixed battery array for electricity grid storage
电网存储混合电池阵列的模型预测控制
- 批准号:
RGPIN-2019-04286 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Model predictive control of a mixed battery array for electricity grid storage
电网存储混合电池阵列的模型预测控制
- 批准号:
RGPIN-2019-04286 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Battery thermal management for high rate applications
高倍率应用的电池热管理
- 批准号:
543606-2019 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Engage Grants Program
Battery energy storage for buildings and communities: sizing and control strategies for multiple services and objectives
建筑物和社区的电池储能:多种服务和目标的规模调整和控制策略
- 批准号:
402578-2013 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Battery energy storage for buildings and communities: sizing and control strategies for multiple services and objectives
建筑物和社区的电池储能:多种服务和目标的规模调整和控制策略
- 批准号:
402578-2013 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Battery energy storage for buildings and communities: sizing and control strategies for multiple services and objectives
建筑物和社区的电池储能:多种服务和目标的规模调整和控制策略
- 批准号:
402578-2013 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Battery energy storage for buildings and communities: sizing and control strategies for multiple services and objectives
建筑物和社区的电池储能:多种服务和目标的规模调整和控制策略
- 批准号:
402578-2013 - 财政年份:2014
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Baseline experimental and potential economic performance of a sodium-nickel-chloride battery integrated with wind turbines and the electricity grid
与风力涡轮机和电网集成的钠镍氯化物电池的基线实验和潜在经济性能
- 批准号:
469042-2014 - 财政年份:2014
- 资助金额:
$ 1.97万 - 项目类别:
Engage Grants Program
Techno-economic analysis of residential battery energy storage systems
住宅电池储能系统的技术经济分析
- 批准号:
451518-2013 - 财政年份:2013
- 资助金额:
$ 1.97万 - 项目类别:
Engage Grants Program
相似海外基金
Formal methods and Koopman-model predictive control
形式化方法和库普曼模型预测控制
- 批准号:
23H01434 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Realization of sparse control with model predictive control and guarantee of its performance
模型预测控制稀疏控制的实现及其性能保证
- 批准号:
23K03916 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A rigorous test of dual process model predictions for problematic alcohol involvement
对有问题的酒精参与的双过程模型预测的严格测试
- 批准号:
10679252 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Elucidating the Role of Endothelial Dysfunction in Alzheimer Disease: Towards A New Data-Driven Disease Model
阐明内皮功能障碍在阿尔茨海默病中的作用:建立新的数据驱动疾病模型
- 批准号:
10737969 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
CRII: OAC: RUI: Real-Time, Mixed-Integer Model Predictive Control via Learned GPU-Acceleration
CRII:OAC:RUI:通过学习 GPU 加速进行实时混合整数模型预测控制
- 批准号:
2246022 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
ECLIPSE: Adaptable Model Predictive Control on a Chip for Personalized and Point-of-Care Plasma Medicine
ECLIPSE:用于个性化和护理点血浆医学的芯片上的自适应模型预测控制
- 批准号:
2317629 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Performance Improvement of Massively Parallel Sample-Based Model Predictive Control
大规模并行基于样本的模型预测控制的性能改进
- 批准号:
23K03896 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cognitive enhancement through model-based and individualized neurostimulation
通过基于模型的个性化神经刺激增强认知
- 批准号:
10608715 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Towards an etiological model of adolescent eating disorders through neuroimaging, genetics, and behavior
通过神经影像学、遗传学和行为建立青少年饮食失调的病因学模型
- 批准号:
10644429 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
NEW AND SCALABLE PARADIGMS FOR DATA-DRIVEN MODEL PREDICTIVE CONTROL
数据驱动模型预测控制的新的、可扩展的范式
- 批准号:
2315963 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant