Probability learning and statistical inference in infancy and early childhood
婴儿期和幼儿期的概率学习和统计推断
基本信息
- 批准号:RGPIN-2020-04472
- 负责人:
- 金额:$ 3.42万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
How do infants and young children learn so much so quickly? The long-term goal of my research program is to answer this question by developing a comprehensive picture of probabilistic learning and inference mechanisms in infancy and early childhood.
In recent years, my students, collaborators, and I have made substantial progress in characterizing how young learners use base-rates and sampling information to make inductive inferences across domains. The short-term goal of my next grant cycle is to make similar progress in characterizing probability learning in infancy and early childhood. Probability learning entails tracking frequencies or proportions of events in space and time. In many probability learning studies, one must predict on which side of space (left or right) an event will occur, over many, many trials. If the event occurs on one side 70% of the time (and you have learned this), how often should you predict an occurrence on that side? Individual adults often do 1 of 2 things: either maximize on the frequent side, always choosing it, or probability match the frequencies, choosing each side in the proportion with which it occurs (70:30). Maximizing has greater expected accuracy (70% vs 58% for probability matching) and so decades of work in adult cognition has examined why and how some adults show each pattern.
Probability learning in early childhood has scarcely been studied, despite the real opportunity for developmental data to weigh in on this longstanding question and despite the fact that probability and statistical learning are particularly critical early in development. The proposed experiments will shed light on the underlying cognitive processes that give rise to probability-matching versus maximizing behaviour. All experiments use a straightforward probability learning design, in which children predict on each trial which side an object will appear, measuring reaction time, choices, and overall learning.
The objective of Series 1 is to obtain a full picture of 3-6-year-old children's probability learning by systematically manipulating probability distributions (50,70,90,100) and examining matching versus maximizing. The objective of Series 2 is to test children's ability to update probabilities in shifting environments. I will ask whether children expect more or less stability in human-generated versus physically determined environments to uncover whether some patterns of behaviour result from an expectation of greater shifting in some domains. Finally, the objective of Series 3 is to collect the first extensive dataset on probability learning in infancy to examine these underlying cognitive processes in infants.
Together these data and findings will be of great interest to cognitive scientists, as they will speak to the underlying cognitive mechanisms involved in probability learning, as well as children's early conceptions of the stability of our environments across domains when engaging in these learning processes.
婴幼儿是如何学得这么快的?我的研究计划的长期目标是通过发展婴儿期和幼儿期概率学习和推理机制的全面图景来回答这个问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Denison, Stephanie其他文献
Novelty preferences depend on goals.
- DOI:
10.3758/s13423-022-02118-9 - 发表时间:
2022-12 - 期刊:
- 影响因子:3.5
- 作者:
Sehl, Claudia G.;Tran, Emma;Denison, Stephanie;Friedman, Ori - 通讯作者:
Friedman, Ori
Win-Stay, Lose-Sample: A simple sequential algorithm for approximating Bayesian inference
- DOI:
10.1016/j.cogpsych.2014.06.003 - 发表时间:
2014-11-01 - 期刊:
- 影响因子:2.6
- 作者:
Bonawitz, Elizabeth;Denison, Stephanie;Griffiths, Thomas L. - 通讯作者:
Griffiths, Thomas L.
Beyond Belief: The Probability-Based Notion of Surprise in Children
- DOI:
10.1037/emo0000394 - 发表时间:
2018-12-01 - 期刊:
- 影响因子:4.2
- 作者:
Doan, Tiffany;Friedman, Ori;Denison, Stephanie - 通讯作者:
Denison, Stephanie
Rational variability in children's causal inferences: The Sampling Hypothesis
- DOI:
10.1016/j.cognition.2012.10.010 - 发表时间:
2013-02-01 - 期刊:
- 影响因子:3.4
- 作者:
Denison, Stephanie;Bonawitz, Elizabeth;Griffiths, Thomas L. - 通讯作者:
Griffiths, Thomas L.
The development of the representativeness heuristic in young children
- DOI:
10.1016/j.jecp.2018.05.006 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:2.6
- 作者:
Gualtieri, Samantha;Denison, Stephanie - 通讯作者:
Denison, Stephanie
Denison, Stephanie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Denison, Stephanie', 18)}}的其他基金
Probability learning and statistical inference in infancy and early childhood
婴儿期和幼儿期的概率学习和统计推断
- 批准号:
RGPIN-2020-04472 - 财政年份:2022
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
Probability learning and statistical inference in infancy and early childhood
婴儿期和幼儿期的概率学习和统计推断
- 批准号:
RGPIN-2020-04472 - 财政年份:2021
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
The development of probabilistic inference in infants
婴儿概率推理的发展
- 批准号:
436151-2013 - 财政年份:2019
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
The development of probabilistic inference in infants
婴儿概率推理的发展
- 批准号:
436151-2013 - 财政年份:2018
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
The development of probabilistic inference in infants
婴儿概率推理的发展
- 批准号:
436151-2013 - 财政年份:2017
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
The development of probabilistic inference in infants
婴儿概率推理的发展
- 批准号:
436151-2013 - 财政年份:2016
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
The development of probabilistic inference in infants
婴儿概率推理的发展
- 批准号:
436151-2013 - 财政年份:2015
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
The development of probabilistic inference in infants
婴儿概率推理的发展
- 批准号:
436151-2013 - 财政年份:2014
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
The development of probabilistic inference in infants
婴儿概率推理的发展
- 批准号:
436151-2013 - 财政年份:2013
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
Integrating physical constraints in statistical inference by 11-month-olds
将 11 个月大婴儿的身体限制纳入统计推断
- 批准号:
361581-2009 - 财政年份:2011
- 资助金额:
$ 3.42万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging
智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究
- 批准号:
2342215 - 财政年份:2024
- 资助金额:
$ 3.42万 - 项目类别:
Continuing Grant
CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
- 批准号:
2340241 - 财政年份:2024
- 资助金额:
$ 3.42万 - 项目类别:
Continuing Grant
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
- 批准号:
495410 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
- 批准号:
2886365 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
- 批准号:
2886852 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Studentship
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
- 批准号:
2334261 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
- 批准号:
2244160 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Standard Grant
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Understanding the synergistic roles of water insecurity and food insecurity in the health of Mexican adults
了解水不安全和粮食不安全对墨西哥成年人健康的协同作用
- 批准号:
10647464 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别: