Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
基本信息
- 批准号:RGPIN-2019-04803
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimization problems, which appear in many fields of science, engineering and healthcare, ask to find minimizers or maximizers of functions subject to constraints. Splitting algorithms are powerful optimization methods which aim to solve constrained convex (but not necessarily smooth) optimization problems, which are oftentimes encountered in practice. Examples of these methods are the DouglasRachford method, the forward-backward method and the alternating direction method of multipliers (ADMM). Concrete areas of applications include image processing (e.g., image denoising problems), data science (e.g., support vector machine problems), statistics and machine learning (e.g., the least absolute shrinkage and selection operator (LASSO) problem) and finance (e.g., portfolio optimization).
Finding conditions that guarantee the convergence of these algorithms to a solution is a very active area of research. Typical convergence results require the convexity of the objective function and/or the constraints, as well as the existence of solutions. The long-term objective of my research program is to investigate the behaviour of splitting methods in the absence of minimizers and/or convexity. The importance of investigating this situation stems from the fact that it occurs in practice but is not well understood. These aspects of my research connect to phase retrieval, intensity-modulated radiation therapy, and deep learning (via the popular but nonconvex loss function from neural networks).
The short-term objectives of my research program are summarized below.
1. Using tools from convex and variational analysis, I will explore the analytic behaviour of different splitting algorithms in the inconsistent and/or nonconvex case. Some of these methods have shown great promise when applied to these cases; however, an in-depth analysis is still lacking.
2. Building on these analytical results, I will utilize techniques from dynamical systems and nonlinear operator theory to develop the algorithmic counterpart of the analysis. In this case, we must deal with operators (for instance, projections onto nonconvex sets) that lack properties typically utilized in convergence proofs.
3. The third component of my research program is the computational counterpart. This research includes numerical testing and comparison of the computational cost of these methods to other existing ones, as well as developing software packages.
Impact: On the one hand, the progress we make will be of significant interest for scientists employing splitting methods as well as the industrial and healthcare sectors, since the functions used to model industrial problems are often nonconvex. On the other hand, my students and postdoctoral fellows will acquire a strong analytic and computational foundation. This will contribute to developments in optimization theory and related software. Both aspects will significantly contribute to Canada's leading role in science and technology.
优化问题出现在科学、工程和医疗保健的许多领域,要求找到受约束函数的最小值或最大值。分裂算法是一种强大的优化方法,旨在解决在实践中经常遇到的约束凸(但不一定是光滑)优化问题。这些方法的例子是DouglasRachford法,正向-反向法和乘法器的交替方向法(ADMM)。具体的应用领域包括图像处理(例如,图像去噪问题),数据科学(例如,支持向量机问题),统计学和机器学习(例如,最小绝对收缩和选择算子(LASSO)问题)和金融(例如,投资组合优化)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moursi, Walaa其他文献
Moursi, Walaa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moursi, Walaa', 18)}}的其他基金
Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
- 批准号:
RGPIN-2019-04803 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
- 批准号:
RGPIN-2019-04803 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
- 批准号:
RGPIN-2019-04803 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
- 批准号:
DGECR-2019-00314 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
Splitting methods for nonconvex and inconsistent problems
非凸和不一致问题的分裂方法
- 批准号:
502917-2017 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Postdoctoral Fellowships
Splitting methods for nonconvex and inconsistent problems
非凸和不一致问题的分裂方法
- 批准号:
502917-2017 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Postdoctoral Fellowships
Splitting methods for nonconvex and inconsistent problems
非凸和不一致问题的分裂方法
- 批准号:
502917-2017 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Postdoctoral Fellowships
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
- 批准号:
10552325 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
- 批准号:
2310170 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
- 批准号:
2237616 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Prediction of molten wall turbulence and defects in the solidified wall by DNS and PFM and optimization of control methods
利用DNS和PFM预测熔壁湍流和凝固壁缺陷并优化控制方法
- 批准号:
23K03655 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Adapting Treatment Delivery to Improve Retention in Evidence-Based PTSD Treatment
调整治疗方式以提高循证 PTSD 治疗的保留率
- 批准号:
10539602 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Novel approach to identify RNA-bound small molecules in vivo
体内鉴定 RNA 结合小分子的新方法
- 批准号:
10646626 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
- 批准号:
10668166 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Optimization of a Self-Adjuvanting Particle System for Delivering Respiratory Syncytial Virus Prefusion Protein
用于输送呼吸道合胞病毒预融合蛋白的自我辅助颗粒系统的优化
- 批准号:
10666079 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别: