Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
基本信息
- 批准号:RGPIN-2019-04803
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimization problems, which appear in many fields of science, engineering and healthcare, ask to find minimizers or maximizers of functions subject to constraints. Splitting algorithms are powerful optimization methods which aim to solve constrained convex (but not necessarily smooth) optimization problems, which are oftentimes encountered in practice. Examples of these methods are the Douglas-Rachford method, the forward-backward method and the alternating direction method of multipliers (ADMM). Concrete areas of applications include image processing (e.g., image denoising problems), data science (e.g., support vector machine problems), statistics and machine learning (e.g., the least absolute shrinkage and selection operator (LASSO) problem) and finance (e.g., portfolio optimization). Finding conditions that guarantee the convergence of these algorithms to a solution is a very active area of research. Typical convergence results require the convexity of the objective function and/or the constraints, as well as the existence of solutions. The long-term objective of my research program is to investigate the behaviour of splitting methods in the absence of minimizers and/or convexity. The importance of investigating this situation stems from the fact that it occurs in practice but is not well understood. These aspects of my research connect to phase retrieval, intensity-modulated radiation therapy, and deep learning (via the popular but nonconvex loss function from neural networks). The short-term objectives of my research program are summarized below. 1. Using tools from convex and variational analysis, I will explore the analytic behaviour of different splitting algorithms in the inconsistent and/or nonconvex case. Some of these methods have shown great promise when applied to these cases; however, an in-depth analysis is still lacking. 2. Building on these analytical results, I will utilize techniques from dynamical systems and nonlinear operator theory to develop the algorithmic counterpart of the analysis. In this case, we must deal with operators (for instance, projections onto nonconvex sets) that lack properties typically utilized in convergence proofs. 3. The third component of my research program is the computational counterpart. This research includes numerical testing and comparison of the computational cost of these methods to other existing ones, as well as developing software packages. Impact: On the one hand, the progress we make will be of significant interest for scientists employing splitting methods as well as the industrial and healthcare sectors, since the functions used to model industrial problems are often nonconvex. On the other hand, my students and postdoctoral fellows will acquire a strong analytic and computational foundation. This will contribute to developments in optimization theory and related software. Both aspects will significantly contribute to Canada's leading role in science and technology.
最优化问题出现在科学、工程和医疗保健的许多领域,要求寻找受约束的函数的极小值或极大值。分裂算法是一种功能强大的优化方法,旨在解决实际中经常遇到的约束凸(但不一定光滑)优化问题。这些方法的例子有Douglas-Rachford方法、向前-向后方法和乘子交替方向法(ADMM)。具体的应用领域包括图像处理(例如,图像去噪问题)、数据科学(例如,支持向量机问题)、统计学和机器学习(例如,最小绝对收缩和选择算子(LASSO)问题)和金融(例如,投资组合优化)。寻找保证这些算法收敛到解的条件是一个非常活跃的研究领域。典型的收敛结果要求目标函数和/或约束的凸性,以及解的存在性。我的研究计划的长期目标是研究分裂方法在没有极小化和/或凸性的情况下的行为。调查这种情况的重要性源于这样一个事实,即它在实践中发生,但没有得到很好的理解。我研究的这些方面与相位恢复、强度调制放射治疗和深度学习(通过来自神经网络的流行但非凸的损失函数)有关。我的研究计划的短期目标总结如下。1.利用凸分析和变分分析的工具,研究了不同分裂算法在不一致和/或非凸情况下的分析行为。其中一些方法在应用于这些案例时显示出了巨大的前景;然而,仍然缺乏深入的分析。2.在这些分析结果的基础上,我将利用动力系统和非线性算子理论的技术来开发与分析对应的算法。在这种情况下,我们必须处理缺乏通常用于收敛证明的性质的算子(例如,在非凸集上的投影)。3.我的研究项目的第三个组成部分是计算。这项研究包括数值测试和比较这些方法与其他现有方法的计算成本,以及开发软件包。影响:一方面,我们取得的进展将对使用分裂方法的科学家以及工业和医疗保健部门产生重大兴趣,因为用于模拟工业问题的函数通常是非凸的。另一方面,我的学生和博士后研究员将获得强大的分析和计算基础。这将有助于优化理论和相关软件的发展。这两个方面都将对加拿大在科学和技术方面的领先地位做出重大贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moursi, Walaa其他文献
Moursi, Walaa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moursi, Walaa', 18)}}的其他基金
Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
- 批准号:
RGPIN-2019-04803 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
- 批准号:
RGPIN-2019-04803 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
- 批准号:
RGPIN-2019-04803 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
- 批准号:
DGECR-2019-00314 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
Splitting methods for nonconvex and inconsistent problems
非凸和不一致问题的分裂方法
- 批准号:
502917-2017 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Postdoctoral Fellowships
Splitting methods for nonconvex and inconsistent problems
非凸和不一致问题的分裂方法
- 批准号:
502917-2017 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Postdoctoral Fellowships
Splitting methods for nonconvex and inconsistent problems
非凸和不一致问题的分裂方法
- 批准号:
502917-2017 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Postdoctoral Fellowships
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
- 批准号:
2237616 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
- 批准号:
2310170 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Prediction of molten wall turbulence and defects in the solidified wall by DNS and PFM and optimization of control methods
利用DNS和PFM预测熔壁湍流和凝固壁缺陷并优化控制方法
- 批准号:
23K03655 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
- 批准号:
10552325 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Computational Infrastructure for Automated Force Field Development and Optimization
用于自动力场开发和优化的计算基础设施
- 批准号:
10699200 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Intracranial Investigation of Neural Circuity Underlying Human Mood
人类情绪背后的神经回路的颅内研究
- 批准号:
10660355 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
- 批准号:
10734008 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Accelerated Neuromodulation of Prefrontal Circuitry during Clozapine Treatment
氯氮平治疗期间前额叶回路的加速神经调节
- 批准号:
10726660 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
CAR T cells targeting mesothelin and secreting bispecific antibodies targeting fibroblasts in pancreatic cancer
CAR T 细胞靶向间皮素并分泌靶向胰腺癌成纤维细胞的双特异性抗体
- 批准号:
10731635 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别: